Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Bioinformatics ; 22(1): 573, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837953

RESUMO

BACKGROUND: With the rapid development of various advanced biotechnologies, researchers in related fields have realized that microRNAs (miRNAs) play critical roles in many serious human diseases. However, experimental identification of new miRNA-disease associations (MDAs) is expensive and time-consuming. Practitioners have shown growing interest in methods for predicting potential MDAs. In recent years, an increasing number of computational methods for predicting novel MDAs have been developed, making a huge contribution to the research of human diseases and saving considerable time. In this paper, we proposed an efficient computational method, named bipartite graph-based collaborative matrix factorization (BGCMF), which is highly advantageous for predicting novel MDAs. RESULTS: By combining two improved recommendation methods, a new model for predicting MDAs is generated. Based on the idea that some new miRNAs and diseases do not have any associations, we adopt the bipartite graph based on the collaborative matrix factorization method to complete the prediction. The BGCMF achieves a desirable result, with AUC of up to 0.9514 ± (0.0007) in the five-fold cross-validation experiments. CONCLUSIONS: Five-fold cross-validation is used to evaluate the capabilities of our method. Simulation experiments are implemented to predict new MDAs. More importantly, the AUC value of our method is higher than those of some state-of-the-art methods. Finally, many associations between new miRNAs and new diseases are successfully predicted by performing simulation experiments, indicating that BGCMF is a useful method to predict more potential miRNAs with roles in various diseases.


Assuntos
MicroRNAs , Algoritmos , Biologia Computacional , Simulação por Computador , Predisposição Genética para Doença , Humanos , MicroRNAs/genética
2.
BMC Bioinformatics ; 21(1): 454, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054708

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a method, collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations. RESULTS: The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix. Then the Weight K Nearest Known Neighbors method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the fivefold cross-validation, with an AUC of 0.9569 (0.0005). CONCLUSIONS: The AUC value of MCCMF is higher than other advanced methods in the fivefold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.


Assuntos
Algoritmos , Predisposição Genética para Doença , MicroRNAs/genética , Área Sob a Curva , Redes Reguladoras de Genes , Hepatoblastoma/genética , Humanos , Curva ROC , Reprodutibilidade dos Testes , Retinoblastoma/genética , Fatores de Risco
3.
IEEE J Biomed Health Inform ; 28(2): 1110-1121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38055359

RESUMO

Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Reprodutibilidade dos Testes , Biologia Computacional/métodos , Neoplasias/genética , Algoritmos
4.
IEEE J Biomed Health Inform ; 28(6): 3513-3522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38568771

RESUMO

The pathogenesis of Alzheimer's disease (AD) is extremely intricate, which makes AD patients almost incurable. Recent studies have demonstrated that analyzing multi-modal data can offer a comprehensive perspective on the different stages of AD progression, which is beneficial for early diagnosis of AD. In this paper, we propose a deep self-reconstruction fusion similarity hashing (DS-FSH) method to effectively capture the AD-related biomarkers from the multi-modal data and leverage them to diagnose AD. Given that most existing methods ignore the topological structure of the data, a deep self-reconstruction model based on random walk graph regularization is designed to reconstruct the multi-modal data, thereby learning the nonlinear relationship between samples. Additionally, a fused similarity hash based on anchor graph is proposed to generate discriminative binary hash codes for multi-modal reconstructed data. This allows sample fused similarity to be effectively modeled by a fusion similarity matrix based on anchor graph while modal correlation can be approximated by Hamming distance. Especially, extracted features from the multi-modal data are classified using deep sparse autoencoders classifier. Finally, experiments conduct on the AD Neuroimaging Initiative database show that DS-FSH outperforms comparable methods of AD classification. To conclude, DS-FSH identifies multi-modal features closely associated with AD, which are expected to contribute significantly to understanding of the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Humanos , Algoritmos , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Imagem Multimodal/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38833405

RESUMO

Feature selection is a critical component of data mining and has garnered significant attention in recent years. However, feature selection methods based on information entropy often introduce complex mutual information forms to measure features, leading to increased redundancy and potential errors. To address this issue, we propose FSCME, a feature selection method combining Copula correlation (Ccor) and the maximum information coefficient (MIC) by entropy weights. The FSCME takes into consideration the relevance between features and labels, as well as the redundancy among candidate features and selected features. Therefore, the FSCME utilizes Ccor to measure the redundancy between features, while also estimating the relevance between features and labels. Meanwhile, the FSCME employs MIC to enhance the credibility of the correlation between features and labels. Moreover, this study employs the Entropy Weight Method (EWM) to evaluate and assign weights to the Ccor and MIC. The experimental results demonstrate that FSCME yields a more effective feature subset for subsequent clustering processes, significantly improving the classification performance compared to the other six feature selection methods. The source codes of the FSCME are available online at https://github.com/CDMBlab/FSCME.

6.
IEEE J Biomed Health Inform ; 28(5): 3029-3041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38427553

RESUMO

The roles of brain region activities and genotypic functions in the pathogenesis of Alzheimer's disease (AD) remain unclear. Meanwhile, current imaging genetics methods are difficult to identify potential pathogenetic markers by correlation analysis between brain network and genetic variation. To discover disease-related brain connectome from the specific brain structure and the fine-grained level, based on the Automated Anatomical Labeling (AAL) and human Brainnetome atlases, the functional brain network is first constructed for each subject. Specifically, the upper triangle elements of the functional connectivity matrix are extracted as connectivity features. The clustering coefficient and the average weighted node degree are developed to assess the significance of every brain area. Since the constructed brain network and genetic data are characterized by non-linearity, high-dimensionality, and few subjects, the deep subspace clustering algorithm is proposed to reconstruct the original data. Our multilayer neural network helps capture the non-linear manifolds, and subspace clustering learns pairwise affinities between samples. Moreover, most approaches in neuroimaging genetics are unsupervised learning, neglecting the diagnostic information related to diseases. We presented a label constraint with diagnostic status to instruct the imaging genetics correlation analysis. To this end, a diagnosis-guided deep subspace clustering association (DDSCA) method is developed to discover brain connectome and risk genetic factors by integrating genotypes with functional network phenotypes. Extensive experiments prove that DDSCA achieves superior performance to most association methods and effectively selects disease-relevant genetic markers and brain connectome at the coarse-grained and fine-grained levels.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico por imagem , Análise por Conglomerados , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Algoritmos , Idoso , Biomarcadores , Feminino , Masculino , Atlas como Assunto , Neuroimagem/métodos
7.
IEEE Trans Neural Netw Learn Syst ; 34(9): 5570-5579, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-34860656

RESUMO

Determining microRNA (miRNA)-disease associations (MDAs) is an integral part in the prevention, diagnosis, and treatment of complex diseases. However, wet experiments to discern MDAs are inefficient and expensive. Hence, the development of reliable and efficient data integrative models for predicting MDAs is of significant meaning. In the present work, a novel deep learning method for predicting MDAs through deep autoencoder with multiple kernel learning (DAEMKL) is presented. Above all, DAEMKL applies multiple kernel learning (MKL) in miRNA space and disease space to construct miRNA similarity network and disease similarity network, respectively. Then, for each disease or miRNA, its feature representation is learned from the miRNA similarity network and disease similarity network via the regression model. After that, the integrated miRNA feature representation and disease feature representation are input into deep autoencoder (DAE). Furthermore, the novel MDAs are predicted through reconstruction error. Ultimately, the AUC results show that DAEMKL achieves outstanding performance. In addition, case studies of three complex diseases further prove that DAEMKL has excellent predictive performance and can discover a large number of underlying MDAs. On the whole, our method DAEMKL is an effective method to identify MDAs.


Assuntos
MicroRNAs , MicroRNAs/genética , Redes Neurais de Computação , Algoritmos , Biologia Computacional/métodos
8.
IEEE J Biomed Health Inform ; 26(4): 1872-1882, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34495855

RESUMO

The exploration of single cell RNA-sequencing (scRNA-seq) technology generates a new perspective to analyze biological problems. One of the major applications of scRNA-seq data is to discover subtypes of cells by cell clustering. Nevertheless, it is challengeable for traditional methods to handle scRNA-seq data with high level of technical noise and notorious dropouts. To better analyze single cell data, a novel scRNA-seq data analysis model called Maximum correntropy criterion based Non-negative and Low Rank Representation (MccNLRR) is introduced. Specifically, the maximum correntropy criterion, as an effective loss function, is more robust to the high noise and large outliers existed in the data. Moreover, the low rank representation is proven to be a powerful tool for capturing the global and local structures of data. Therefore, some important information, such as the similarity of cells in the subspace, is also extracted by it. Then, an iterative algorithm on the basis of the half-quadratic optimization and alternating direction method is developed to settle the complex optimization problem. Before the experiment, we also analyze the convergence and robustness of MccNLRR. At last, the results of cell clustering, visualization analysis, and gene markers selection on scRNA-seq data reveal that MccNLRR method can distinguish cell subtypes accurately and robustly.


Assuntos
Algoritmos , Análise de Célula Única , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , RNA-Seq , Análise de Célula Única/métodos
9.
Interdiscip Sci ; 14(1): 22-33, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34115312

RESUMO

In recent years, clustering analysis of cancer genomics data has gained widespread attention. However, limited by the dimensions of the matrix, the traditional methods cannot fully mine the underlying geometric structure information in the data. Besides, noise and outliers inevitably exist in the data. To solve the above two problems, we come up with a new method which uses tensor to represent cancer omics data and applies hypergraph to save the geometric structure information in original data. This model is called hypergraph regularized tensor robust principal component analysis (HTRPCA). The data processed by HTRPCA becomes two parts, one of which is a low-rank component that contains pure underlying structure information between samples, and the other is some sparse interference points. So we can use the low-rank component for clustering. This model can retain complex geometric information between more sample points due to the addition of the hypergraph regularization. Through clustering, we can demonstrate the effectiveness of HTRPCA, and the experimental results on TCGA datasets demonstrate that HTRPCA precedes other advanced methods. This paper proposes a new method of using tensors to represent cancer omics data and introduces hypergraph items to save the geometric structure information of the original data. At the same time, the model decomposes the original tensor into low-order tensors and sparse tensors. The low-rank tensor was used to cluster cancer samples to verify the effectiveness of the method.


Assuntos
Algoritmos , Neoplasias , Análise por Conglomerados , Genômica , Humanos , Neoplasias/genética , Análise de Componente Principal
10.
IEEE J Biomed Health Inform ; 24(10): 3002-3011, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086224

RESUMO

Non-negative Matrix Factorization (NMF) is a dimensionality reduction approach for learning a parts-based and linear representation of non-negative data. It has attracted more attention because of that. In practice, NMF not only neglects the manifold structure of data samples, but also overlooks the priori label information of different classes. In this paper, a novel matrix decomposition method called Hyper-graph regularized Constrained Non-negative Matrix Factorization (HCNMF) is proposed for selecting differentially expressed genes and tumor sample classification. The advantage of hyper-graph learning is to capture local spatial information in high dimensional data. This method incorporates a hyper-graph regularization constraint to consider the higher order data sample relationships. The application of hyper-graph theory can effectively find pathogenic genes in cancer datasets. Besides, the label information is further incorporated in the objective function to improve the discriminative ability of the decomposition matrix. Supervised learning with label information greatly improves the classification effect. We also provide the iterative update rules and convergence proofs for the optimization problems of HCNMF. Experiments under The Cancer Genome Atlas (TCGA) datasets confirm the superiority of HCNMF algorithm compared with other representative algorithms through a set of evaluations.


Assuntos
Genes Neoplásicos/genética , Genômica/métodos , Neoplasias , Aprendizado de Máquina Supervisionado , Transcriptoma/genética , Algoritmos , Humanos , Neoplasias/classificação , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA