Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Res ; 33(5): 779-786, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37295844

RESUMO

Tandem duplications are frequent structural variations of the genome and play important roles in genetic disease and cancer. However, interpreting the phenotypic consequences of tandem duplications remains challenging, in part owing to the lack of genetic tools to model such variations. Here, we developed a strategy, tandem duplication via prime editing (TD-PE), to create targeted, programmable, and precise tandem duplication in the mammalian genome. In this strategy, we design a pair of in trans prime editing guide RNAs (pegRNAs) for each targeted tandem duplication, which encode the same edits but prime the single-stranded DNA (ssDNA) extension in opposite directions. The reverse transcriptase (RT) template of each extension is designed homologous to the target region of the other single guide RNA (sgRNA) to promote the reannealing of the edited DNA strands and the duplication of the fragment in between. We showed that TD-PE produced robust and precise in situ tandem duplications of genomic fragments ranging from ∼50 bp to ∼10 kb, with a maximal efficiency up to 28.33%. By fine-tuning the pegRNAs, we achieved simultaneous targeted duplication and fragment insertion. Finally, we successfully produced multiple disease-relevant tandem duplications, showing the general utility of TD-PE in genetic research.


Assuntos
DNA , Genoma , Animais , DNA/genética , Genômica , Sistemas CRISPR-Cas , Mamíferos/genética
2.
Nucleic Acids Res ; 50(11): 6423-6434, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687127

RESUMO

Prime editors consisting of Cas9-nickase and reverse transcriptase enable targeted precise editing of small DNA pieces, including all 12 kinds of base substitutions, insertions and deletions, while without requiring double-strand breaks or donor templates. Current optimized prime editing strategy (PE3) uses two guide RNAs to guide the performance of prime editor. One guide RNA carrying both spacer and templating sequences (pegRNA) guides prime editor to produce ssDNA break and subsequent extension, and the other one produces a nick in the complementary strand. Here, we demonstrated that positioning the nick sgRNA nearby the templating sequences of the pegRNA facilitated targeted large fragment deletion and that engineering both guide RNAs to be pegRNAs to achieve bi-direction prime editing (Bi-PE) further increase the efficiency by up to 16 times and improved the accuracy of editing products by 60 times. In addition, we showed that Bi-PE strategy also increased the efficiency of simultaneous conversion of multiple bases but not single base conversion over PE3. In conclusion, Bi-PE strategy expanded the editing scope and improved the efficiency and the accuracy of prime editing system, which might have a wide range of potential applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Pequeno RNA não Traduzido , Animais , Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/metabolismo , Quebras de DNA de Cadeia Dupla , Mamíferos/genética , DNA Polimerase Dirigida por RNA/metabolismo , Pequeno RNA não Traduzido/genética
3.
FASEB J ; 35(12): e22045, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34797942

RESUMO

Directed base substitution with base editing technology enables efficient and programmable conversion of C:G or A:T base pairs to T:A or G:C in the genome. Although this technology has shown great potentials in a variety of basic research, off-target editing is among one of the biggest challenges toward its way to clinical application. Base editing tools, especially the tools converting C to T, caused unpredictable off-target editing throughout the genome, which raise the concern that long-term application of these tools would induce genomic instability or even tumorigenesis. To overcome this challenge, we designed an inducible base editing tool that was active only in the presence of a clinically safe chemical, rapamycin. In the guidance of structural information, we designed four split-human APOBEC3A (A3A) -BE3 base editors in which these A3A deaminase enzymes were split at sites that were opposite to the protein-nucleotide interface. We showed that by inducible deaminase reconstruction with a rapamycin responsible interaction system (FRB and FKBP); three out of four split-A3A-derived base editors showed robust inducible base editing. However, in the absence of rapamycin, their editing ability was dramatically inhibited. Among these split editors, splicing at Aa85 of A3A generated the most efficient inducible editing. In addition, compared to the full-length base editor, the splitting did not obviously alter the editing window and motif preference, but slightly increased the product purity. We also expanded this strategy to another frequently used cytosine deaminase, rat APOBEC1 (rA1), and observed a similar induction response. In summary, these results demonstrated the concept that splitting deaminases is a practicable method for timely controlling of base editing tools.


Assuntos
Sistemas CRISPR-Cas , Citidina Desaminase/química , Citidina Desaminase/genética , DNA/química , Edição de Genes , Proteínas/química , Proteínas/genética , DNA/genética , Humanos
4.
Mol Ther Nucleic Acids ; 29: 36-46, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35784015

RESUMO

Recent advances in CRISPR-Cas9 techniques, especially the discovery of base and prime editing, have significantly improved our ability to make precise changes in the genome. We hypothesized that modulating certain endogenous pathway cells could improve the action of those editing tools in mammalian cells. We established a reporter system in which a small fragment was integrated into the genome by prime editing (PE). With this system, we screened an in-house small-molecule library and identified a group of histone deacetylase inhibitors (HDACi) increasing prime editing. We also found that HDACi increased the efficiency of both cytosine base editing (CBE) and adenine base editing (ABE). Moreover, HDACi increased the purity of cytosine base editor products, which was accompanied by an upregulation of the acetylation of uracil DNA glycosylase (UNG) and UNG inhibitor (UGI) and an enhancement of their interaction. In summary, our work demonstrated that HDACi improves Cas9-mediated prime editing and base editing.

5.
FEBS J ; 289(19): 5899-5913, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35411720

RESUMO

The recognition of protospacer adjacent motif (PAM) is a key factor for the CRISPR (i.e. clustered regularly interspaced short palindromic repeats)/CRISPR-associated 9 (Cas9) system to distinguish foreign DNAs from the host genome, and also significantly restricts the targeting scope of the system during genome-editing applications. Structurally, the PAM interacting (PI) domain, which usually is located in the C-terminus of Cas9 proteins, directly binds to PAM and plays a key role in determining the recognition specificity. However, several lines of evidence showed that other regions of Cas9 protein beyond the PI domain might also play roles in PAM interaction. Here, we constructed a mosaic SpCas9 protein (xCas9-NG) by fusing the PI domain of SpCas9 PAM variant, Cas9-NG with the non-PI fragment of xCas9 protein that contains multiple amino acid substitutions. We found that non-PI fragment of xCas9 expanded PAM recognition of the Cas9-NG PI domain. In addition, xCas9-NG showed an improved editing efficiency in the majority of targets harboring xCas9 and Cas9-NG PAMs. Importantly, this finding was also successfully extended to other Cas9 variants, including SpRY and the non-G SpCas9 series. Together, our work expands the target scope of SpCas9 editing system and demonstrates the notion that the non-PI domain fragment plays an important role in PAM restriction.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Substituição de Aminoácidos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Mutação
6.
Mol Ther Nucleic Acids ; 30: 173, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36250209

RESUMO

[This corrects the article DOI: 10.1016/j.omtn.2022.05.036.].

7.
Signal Transduct Target Ther ; 7(1): 108, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35440051

RESUMO

Large scale genomic aberrations including duplication, deletion, translocation, and other structural changes are the cause of a subtype of hereditary genetic disorders and contribute to onset or progress of cancer. The current prime editor, PE2, consisting of Cas9-nickase and reverse transcriptase enables efficient editing of genomic deletion and insertion, however, at small scale. Here, we designed a novel prime editor by fusing reverse transcriptase (RT) to nuclease wild-type Cas9 (WT-PE) to edit large genomic fragment. WT-PE system simultaneously introduced a double strand break (DSB) and a single 3' extended flap in the target site. Coupled with paired prime editing guide RNAs (pegRNAs) that have complementary sequences in their 3' terminus while target different genomic regions, WT-PE produced bi-directional prime editing, which enabled efficient and versatile large-scale genome editing, including large fragment deletion up to 16.8 megabase (Mb) pairs and chromosomal translocation. Therefore, our WT-PE system has great potential to model or treat diseases related to large-fragment aberrations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , DNA Polimerase Dirigida por RNA/genética
8.
Mol Ther Methods Clin Dev ; 24: 230-240, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35141352

RESUMO

Base editing tools enabled efficient conversion of C:G or A:T base pairs to T:A or G:C, which are especially powerful for targeting monogenic lesions. However, in vivo correction of disease-causing mutations is still less efficient because of the large size of base editors. Here, we designed a dual adeno-associated virus (AAV) strategy for in vivo delivery of base editors, in which deaminases were linked to Cas9 through the interaction of GCN4 peptide and its single chain variable fragment (scFv) antibody. We found that one or two copies of GCN4 peptide were enough for the assembly of base editors and produced robust targeted editing. By optimization of single-guide RNAs (sgRNAs) that target phenylketonuria (PKU) mutation, we were able to achieve up to 27.7% correction in vitro. In vivo delivery of this dual AAV base editing system resulted in efficient correction of PKU-related mutation in neonatal mice and subsequent rescue of hyperphenylalaninemia-associated syndromes. Considering the similarity between Cas9 proteins from different organisms, our delivery strategy will be compatible with other Cas9-derived base editors.

9.
Mol Biomed ; 2(1): 36, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35006470

RESUMO

Prime editing (PE) enables efficiently targeted introduction of multiple types of small-sized genetic change without requiring double-strand breaks or donor templates. Here we designed a simple strategy to introduce random DNA sequences into targeted genomic loci by prime editing, which we named random prime editing (Random-PE). In our strategy, the prime editing guide RNA (pegRNA) was engineered to harbor random sequences between the primer binding sequence (PBS) and homologous arm (HA) of the reverse transcriptase templates. With these pegRNAs, we achieved efficient targeted insertion or substitution of random sequences with different lengths, ranging from 5 to 10, in mammalian cells. Importantly, the diversity of inserted sequences is well preserved. By fine-tuning the design of random sequences, we were able to make simultaneously insertions or substitutions of random sequences in multiple sites, allowing in situ evolution of multiple positions in a given protein. Therefore, these results provide a framework for targeted integration of random sequences into genomes, which can be redirected for manifold applications, such as in situ protospacer adjacent motif (PAM) library construction, enhancer screening, and DNA barcoding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA