Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(4): 5953-5972, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209567

RESUMO

As a high-precision fiber optic sensor, a single optical fiber Fabry Pérot interferometer (FFPI) sensor is often used to measure parameters such as temperature or strain. However, the use of combined FFPIs to measure multiple parameters simultaneously has rarely been reported. In this paper, a compact Tri-FFPI sensor consisting of three series-connected FFPIs is proposed to measure high temperature, high acceleration, and large strain. The total length and diameter of the sensing part are only 2558.9 µm and 250 µm, respectively. One of the FFPIs, FFPI-1, contains a cantilever beam structure to measure vibration acceleration. FFPI-2 is used to measure temperature and the temperature compensation of the strain measurement. FFPI-3 is used to measure strain. To ensure that the sensor has high measurement sensitivity, two demodulation methods are used: the light intensity demodulation method for vibration acceleration and the wavelength demodulation method for temperature and strain. The sensor is capable of withstanding ultrahigh temperatures up to 1000°C.

2.
Micromachines (Basel) ; 14(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37763825

RESUMO

Here, we present a high-precision demodulation method that supports the arrayed waveguide grating (AWG) system, which includes a 1 × 8 AWG as the primary filter with a 0.5 nm channel spacing and a 1 × 4 AWG as the auxiliary filter with a 1 nm channel spacing. The high precision is achieved through an innovative method of decoupling three channels, involving two adjacent channels of the primary filter and one channel of the secondary auxiliary filter. Simulation results show that the AWGs have a good transmission spectrum with crosstalk below -24.8 dB, non-uniformities below 0.8 dB, insertion loss below -3.7 dB, 3 dB bandwidth of 0.25 nm, and 10 dB bandwidth of 0.43 nm. The interrogation precision can reach 8 pm, with a dynamic range of 0.4 nm, corresponding to a single FBG.

3.
Materials (Basel) ; 15(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35629500

RESUMO

Smart wearable devices are occupying an increasingly important position in scientific research and people's life fields. As an indispensable component of smart wearable devices, sensors play a crucial role in their sensing and feedback capabilities. In this paper, we investigate the bending gesture sensing for the most dexterous part of human anatomy, the finger. Based on series-connected fiber Bragg gratings (FBGs), recognition of finger bending posture is achieved by MATLAB modeling and the cubic spline interpolation.

4.
Micromachines (Basel) ; 13(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35630156

RESUMO

A Mach-Zehnder fiber optic sensor with high refractive index response sensitivity was developed. By fabricating a waist-enlarged bitaper structure on the interference arm of a single mode-multimode-single mode (SMS) Mach-Zehnder interferometer (MZI), the spectral contrast and response sensitivity were improved. Subsequently, the response sensitivity was further improved by etching the interference arm. When a beam of light was introduced into the sensor, due to the structural mismatch between the multimode fiber and the normal transmission light, the difference between the low-order mode and the high-order mode was generated in the fiber core and the fiber cladding. In the process of transmission in the sensing arm, due to the different refractive indices of the core and cladding, the optical path difference of the high-order mode and the low-order mode was different, which eventually generated interference fringes. The experimentally measured response sensitivity of SMS MZI in the range of 1.351 RIU to 1.402 RIU is 57.623 nm/RIU; the response sensitivity of a single mode-multimode-bitaper-multimode-single mode (SMBMS) MZI is 61.607 nm/RIU; and the response sensitivity of the etched SMBMS (ESMBMS) MZI is 287.65 nm/RIU. The response sensitivity of the new ESMBMS MZI is three times higher than that of the original SMS MZI. The sensor has the characteristics of compact structure, high sensitivity, easy manufacture, and a wide range of refractive index measurements, and can be used in food processing, pharmaceutical manufacturing and other fields.

5.
Materials (Basel) ; 14(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803860

RESUMO

In the rolling process of heavy cylinders, the deformation section is subjected to the effects of compression and shear. In order to analyze the influences of the shear effect on the microstructure evolution characteristics, a mathematical model was established and the rolling process was simulated. Firstly, shear-compression specimen (SCS) and ordinary cylinder specimens were designed, high-temperature compression experiments were carried out and the mathematical model of microstructure evolution considering shear effect was established; then, a program based on finite element software was developed to simulate the microstructure evolution process, and the feasibility of the development program was verified by compression experiments. Finally, a macro-micro coupling model based on the development program was established to simulate the microstructure evolution of the heavy cylinder during the rolling process. Then, the influence of the shear effect on the microstructure evolution was analyzed. The results showed that the shear effect had a great influence on the heavy cylinder. Dynamic recrystallization was more likely to occur in the heavy cylinder during the rolling process and the grain refinement was more obvious; compared with the case without considering the shear effect, the volume fraction of dynamic recrystallization was increased by 0.25%, and the grain size was refined by 30 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA