RESUMO
Salient stimuli can capture attention in a bottom-up manner; however, this attentional capture can be suppressed in a top-down manner. It has been shown that individuals with high working memory capacity (WMC) can suppress salientbut-irrelevant distractors better than those with low WMC; however, neural substrates underlying this difference remain unclear. To examine this, participants with high or low WMC (high-/low-WMC, n = 44/44) performed a visual search task wherein a color singleton item served as a salient distractor, and underwent structural and resting-state functional magnetic resonance imaging scans. Behaviorally, the color singleton distractor generally reduced the reaction time (RT). This RT benefit (ΔRT) was higher in the high-WMC group relative to the low-WMC group, indicating the superior distractor suppression ability of the high-WMC group. Moreover, leveraging voxel-based morphometry analysis, gray matter morphology (volume and deformation) in the ventral attention network (VAN) was found to show the same, positive associations with ΔRT in both WMC groups. However, correlations of the opposite sign were found between ΔRT and gray matter morphology in the frontoparietal (FPN)/default mode network (DMN) in the two WMC groups. Furthermore, resting-state functional connectivity analysis centering on regions with a structural-behavioral relationship found that connections between the left orbital and right superior frontal gyrus (hubs of DMN and VAN, respectively) was correlated with ΔRT in the high-WMC group (but not in the low-WMC group). Collectively, our work present shared and distinct neuroanatomical substrates of distractor suppression in high- and low-WMC individuals. Furthermore, intrinsic connectivity of the brain network hubs in high-WMC individuals may account for their superior ability in suppressing salient distractors.
Assuntos
Encéfalo , Memória de Curto Prazo , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Humanos , Imageamento por Ressonância Magnética , Tempo de ReaçãoRESUMO
Visual selective attention allows us to filter relevant inputs from irrelevant inputs during visual processing. In contrast to rich research exploring how the brain facilitates task-relevant inputs, less is known about how the brain suppresses irrelevant inputs. In this study, we used transcranial magnetic stimulation (TMS) to investigate the causal role of the right dorsolateral prefrontal cortex (DLPFC), a crucial brain area for attentional control, in distractor suppression. Specifically, 10-Hz repetitive TMS (rTMS) was applied to the right DLPFC and Vertex at the stimuli onset (stimuli-onset TMS) or 500 ms prior to the stimuli onset (prestimuli TMS). In a variant of the Posner cueing task, participants were instructed to identify the shape of a white target while ignoring a white or colored distractor whose location was either cued in advance or uncued. As anticipated, either the location cue or the colored distractor led to faster responses. Notably, the location cueing effect was eliminated by stimuli-onset TMS to the right DLPFC, but not by prestimuli TMS. Further analyses showed that stimuli-onset TMS quickened responses to uncued trials, and this TMS effect was derived from the inhibition at the distractor in both visual fields. In addition, TMS over the right DLPFC had no specific effect on the colored distractor compared to the white one. Considered collectively, these findings indicate that the DLPFC plays a crucial role in visuospatial distractor suppression and acts upon stimuli presentation. Besides, it seems the DLPFC contributes more to location-based distractor suppression than to color-based one.
Assuntos
Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Atenção , Sinais (Psicologia) , Humanos , Inibição PsicológicaRESUMO
Antisaccade task requires inhibition of a prepotent prosaccade to a peripheral target and initiation of a saccade to the opposite location, and, therefore, is used as a tool to investigate behavioral adjustment. The frontal and parietal cortices are both known for their activation during saccade generation, but it is unclear whether their neuroanatomical characteristics also contribute to antisaccades. Here, we took antisaccade cost (antisaccade latency minus prosaccade latency) as an index for additional time for generating antisaccades. Fifty-eight participants conducted pro and antisaccade tasks outside the magnetic resonance imaging (MRI) scanner and their structural MRI (sMRI) data were also collected to explore brain regions neuroanatomically related to antisaccade cost. Then, twelve participants performed saccade tasks in the scanner and their task-state functional MRI (fMRI) data were collected to verify the activation of structurally identified brain regions during the saccade generation. Voxel-based morphometry (VBM) results revealed that gray matter volume (GMV) of the left precentral gyrus and the left insula were positively correlated with the antisaccade cost, which was validated by the prediction analysis. Brain activation results showed the activation of the precentral during both pro and antisaccade execution period, but not the insula. Our results suggest that precentral gyrus and insula play vital roles to antisaccade cost, but possibly in different ways. The insula, a key node of the salience network, possibly regulates the saliency processing of the target, while the precentral gyrus possibly mediates the generation of saccades. Our study especially highlights an outstanding role of the precentral gyrus in flexible oculomotor control.