Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597412

RESUMO

Natural immunoglobulin M (IgM) antibodies have been shown to recognize post-ischemic neoepitopes following reperfusion of tissues and to activate complement. Specifically, IgM antibodies and complement have been shown to drive hepatic ischemia reperfusion injury (IRI). Herein, we investigate the therapeutic effect of C2 scFv (single-chain antibody construct with specificity of a natural IgM antibody) on hepatic IRI in C57BL/6 mice. Compared with PBS-treated mice, C2 scFv-treated mice displayed almost no necrotic areas, significant reduction in serum ALT, AST and LDH levels, and significantly reduced in the number of TUNEL positive cells. Moreover, C2 scFv-treated mice exhibited a notable reduction in inflammatory cells after hepatic IRI than PBS-treated mice. The serum IL-6, IL-1ß, TNF-α and MPC-1 levels were also severely suppressed by C2 scFv. Interestingly, C2 scFv reconstituted hepatic inflammation and IRI in Rag1-/- mice. We found that C2 scFv promoted hepatic cell death and increased inflammatory cytokines and infiltration of inflammatory cells after hepatic IRI in Rag1-/- mice. In addition, IgM and complement 3d (C3d) were deposited in WT mice and in Rag1-/- mice reconstituted with C2 scFv, indicating that C2 scFv can affect IgM binding and complement activation and reconstitute hepatic IRI. C3d expression was significantly lower in C57BL/6 mice treated with C2 scFv compared to PBS, indicating that excessive exogenous C2 scFv inhibited complement activation. These data suggest that C2 scFv alleviates hepatic IRI by blocking complement activation, and treatment with C2 scFv may be a promising therapy for hepatic IRI.


Assuntos
Fígado , Traumatismo por Reperfusão , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Imunoglobulina M , Proteínas do Sistema Complemento , Proteínas de Homeodomínio/metabolismo
2.
World J Surg Oncol ; 20(1): 387, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471393

RESUMO

PURPOSE: Liver cancer is one of the most common tumors with the seventh-highest incidence and the third-highest mortality. Many studies have shown that small extracellular vesicles (sEVs) play an important role in liver cancer. Here, we report comprehensive signatures for sEV proteins from plasma obtained from patients with hepatocellular carcinoma (HCC), which might be valuable for the evaluation and diagnosis of HCC. METHODS: We extracted sEVs from the plasma of controls and patients with HCC. Differentially expressed proteins in the sEVs were analyzed using label-free quantification and bioinformatic analyses. Western blotting (WB) was used to validate the abovementioned sEV proteins. RESULTS: Proteomic analysis was performed for plasma sEVs from 21 patients with HCC and 15 controls. Among the 335 identified proteins in our study, 27 were significantly dysregulated, including 13 upregulated proteins that were involved predominantly in the complement cascade (complement C1Q subcomponent subunit B (C1QB), complement C1Q subcomponent subunit C (C1QC), C4B-binding protein alpha chain (C4BPA), and C4B-binding protein beta chain (C4BPB)) and the coagulation cascade (F13B, fibrinogen alpha chain (FGA), fibrinogen beta chain (FGB), and fibrinogen gamma chain (FGG)). We verified increased levels of the C1QB, C1QC, C4BPA, and C4BPB proteins in the plasma sEVs from patients with HCC in both the discovery cohort and validation cohort. CONCLUSIONS: The complement cascade in sEVs was significantly involved in HCC progression. C1QB, C1QC, C4BPA, and C4BPB were highly abundant in the plasma sEVs from patients with HCC and might represent molecular signatures.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Complemento C1q/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo , Vesículas Extracelulares/metabolismo , Fibrinogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteômica
3.
BMC Genomics ; 21(1): 183, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102653

RESUMO

BACKGROUND: Whole-genome approaches are widely preferred for species delineation in prokaryotes. However, these methods require pairwise alignments and calculations at the whole-genome level and thus are computationally intensive. To address this problem, a strategy consisting of sieving (pre-selecting closely related genomes) followed by alignment and calculation has been proposed. RESULTS: Here, we initially test a published approach called "genome-wide tetranucleotide frequency correlation coefficient" (TETRA), which is specially tailored for sieving. Our results show that sieving by TETRA requires > 40% completeness for both genomes of a pair to yield > 95% sensitivity, indicating that TETRA is completeness-dependent. Accordingly, we develop a novel algorithm called "fragment tetranucleotide frequency correlation coefficient" (FRAGTE), which uses fragments rather than whole genomes for sieving. Our results show that FRAGTE achieves ~ 100% sensitivity and high specificity on simulated genomes, real genomes and metagenome-assembled genomes, demonstrating that FRAGTE is completeness-independent. Additionally, FRAGTE sieved a reduced number of total genomes for subsequent alignment and calculation to greatly improve computational efficiency for the process after sieving. Aside from this computational improvement, FRAGTE also reduces the computational cost for the sieving process. Consequently, FRAGTE extremely improves run efficiency for both the processes of sieving and after sieving (subsequent alignment and calculation) to together accelerate genome-wide species delineation. CONCLUSIONS: FRAGTE is a completeness-independent algorithm for sieving. Due to its high sensitivity, high specificity, highly reduced number of sieved genomes and highly improved runtime, FRAGTE will be helpful for whole-genome approaches to facilitate taxonomic studies in prokaryotes.


Assuntos
Archaea/genética , Bactérias/genética , Biologia Computacional/métodos , Sequenciamento Completo do Genoma/métodos , Algoritmos , Genoma Arqueal , Genoma Bacteriano , Metagenômica , Especificidade da Espécie
4.
Cancer Sci ; 111(7): 2259-2274, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32391585

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. It has a poor prognosis because it is often diagnosed at the advanced stage when treatments are limited. In addition, HCC pathogenesis is not fully understood, and this has affected early diagnosis and treatment of this disease. Human alkaline ceramidase 2 (ACER2), a key enzyme that regulates hydrolysis of cellular ceramides, affects cancer cell survival, however its role in HCC has not been well characterized. Our results showed that ACER2 is overexpressed in HCC tissues and cell lines. In addition, high ACER2 protein expression was associated with tumor growth; ACER2 knockdown resulted in decreased cell growth and migration. Sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B) promoted HCC cell growth, invasion, and migration; SMPDL3B knockdown had a significant inhibitory effect on HCC tumor growth in vivo. Moreover, ACER2 positively regulated the protein level of SMPDL3B. Of note, ACER2/SMPDL3B promoted ceramide hydrolysis and S1P production. This axis induced HCC survival and could be blocked by inhibition of S1P formation. In conclusion, ACER2 promoted HCC cell survival and migration, possibly via SMPDL3B. Thus, inhibition of ACER2/SMPDL3B may be a novel therapeutic target for HCC treatment.


Assuntos
Ceramidase Alcalina/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Adulto , Idoso , Ceramidase Alcalina/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Monoéster Fosfórico Hidrolases/biossíntese , Transdução de Sinais , Esfingomielina Fosfodiesterase/genética
5.
Hepatology ; 69(6): 2489-2501, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672601

RESUMO

Aldo-keto reductase family 1 member B10 (AKR1B10) is a secretory protein overexpressed in hepatocellular carcinoma (HCC). We aimed to evaluate AKR1B10 as a serum marker for detection of HCC. Herein, we conducted a cohort study that consecutively enrolled 1,244 participants from three independent hospitals, including HCC, healthy controls (HCs), benign liver tumors (BLTs), chronic hepatitis B (CHB), and liver cirrhosis (LC). Serum AKR1B10 was tested by time-resolved fluorescent assays. Data were plotted for receiver operating characteristic (ROC) curve analyses. Alpha-fetoprotein (AFP) was analyzed for comparison. An exploratory discovery cohort demonstrated that serum AKR1B10 increased in patients with HCC (1,567.3 ± 292.6 pg/mL; n = 69) compared with HCs (85.7 ± 10.9 pg/mL; n = 66; P < 0.0001). A training cohort of 519 participants yielded an optimal diagnostic cutoff of serum AKR1B10 at 267.9 pg/mL. When ROC curve was plotted for HCC versus all controls (HC + BLT + CHB + LC), serum AKR1B10 had diagnostic parameters of the area under the curve (AUC) 0.896, sensitivity 72.7%, and specificity 95.7%, which were better than AFP with AUC 0.816, sensitivity 65.1%, and specificity 88.9%. Impressively, AKR1B10 showed promising diagnostic potential in early-stage HCC and AFP-negative HCC. Combination of AKR1B10 with AFP increased diagnostic accuracy for HCC compared with AKR1B10 or AFP alone. A validation cohort of 522 participants confirmed these findings. An independent cohort of 68 patients with HCC who were followed up showed that serum AKR1B10 dramatically decreased 1 day after operation and was nearly back to normal 3 days after operation. Conclusion: AKR1B10 is a potent serum marker for detection of HCC and early-stage HCC, with better diagnostic performance than AFP.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Adulto , Biomarcadores Tumorais , Biópsia por Agulha , Carcinoma Hepatocelular/diagnóstico , Estudos de Casos e Controles , China , Feminino , Hospitais Universitários , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Curva ROC , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
BMC Genomics ; 20(1): 754, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638897

RESUMO

BACKGROUND: Genomic composition has been found to be species specific and is used to differentiate bacterial species. To date, almost no published composition-based approaches are able to distinguish between most closely related organisms, including intra-genus species and intra-species strains. Thus, it is necessary to develop a novel approach to address this problem. RESULTS: Here, we initially determine that the "tetranucleotide-derived z-value Pearson correlation coefficient" (TETRA) approach is representative of other published statistical methods. Then, we devise a novel method called "Tetranucleotide-derived Z-value Manhattan Distance" (TZMD) and compare it with the TETRA approach. Our results show that TZMD reflects the maximal genome difference, while TETRA does not in most conditions, demonstrating in theory that TZMD provides improved resolution. Additionally, our analysis of real data shows that TZMD improves species differentiation and clearly differentiates similar organisms, including similar species belonging to the same genospecies, subspecies and intraspecific strains, most of which cannot be distinguished by TETRA. Furthermore, TZMD is able to determine clonal strains with the TZMD = 0 criterion, which intrinsically encompasses identical composition, high average nucleotide identity and high percentage of shared genomes. CONCLUSIONS: Our extensive assessment demonstrates that TZMD has high resolution. This study is the first to propose a composition-based method for differentiating bacteria at the strain level and to demonstrate that composition is also strain specific. TZMD is a powerful tool and the first easy-to-use approach for differentiating clonal and non-clonal strains. Therefore, as the first composition-based algorithm for strain typing, TZMD will facilitate bacterial studies in the future.


Assuntos
Bactérias/classificação , Técnicas de Tipagem Bacteriana/métodos , Genoma Bacteriano/genética , Algoritmos , Bactérias/genética , DNA Bacteriano/genética , Genômica , Repetições de Microssatélites/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
7.
Hepatology ; 67(2): 721-735, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28880403

RESUMO

Complement plays a role in both hepatic ischemia reperfusion (IR) injury (IRI) and liver regeneration, but it is not clear how complement is activated in either process. We investigated the role of self-reactive immunoglobulin M (IgM) antibodies in activating complement after hepatic IR and liver resection. Natural IgM antibodies that recognize danger-associated molecular patterns (neoepitopes) activate complement following both hepatic IR and liver resection. Antibody-deficient Rag1-/- mice were protected from hepatic IRI, but had increased hepatic injury and an impaired regenerative response after 70% partial hepatectomy (PHx). We identified two IgM monoclonal antibodies (mAbs) that specifically reversed the effect of Rag1 deficiency in both models; B4 (recognizes Annexin IV) and C2 (recognizes subset of phospholipids). Focusing on the B4-specific response, we demonstrated sinusoidal colocalization of IgM and C3d in Rag1-/- mice that were reconstituted with B4 mAb, and furthermore that the Annexin IV neoepitope is specifically and similarly expressed after both hepatic IR and PHx in wild-type (WT) mice. A single-chain antibody construct (scFv) derived from B4 mAb blocked IgM binding and reduced injury post-IR in WT mice, although, interestingly, B4scFv did not alter regeneration post-PHx, indicating that anti-Annexin IV antibodies are sufficient, but not necessary, for the regenerative response in the context of an entire natural antibody repertoire. We also demonstrated expression of the B4 neoepitope in postischemic human liver samples obtained posttransplantation and a corollary depletion in IgM recognizing the B4 and C2 neoepitopes in patient sera following liver transplantation. Conclusion: These data indicate an important role for IgM in hepatic IRI and regeneration, with a similar cross-species injury-specific recognition system that has implications for the design of neoepitope targeted therapeutics. (Hepatology 2018;67:721-735).


Assuntos
Ativação do Complemento , Imunoglobulina M/fisiologia , Regeneração Hepática , Traumatismo por Reperfusão/etiologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos B/imunologia , Proteínas de Homeodomínio/fisiologia , Humanos , Imunoglobulina M/sangue , Transplante de Fígado , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/imunologia
8.
Lipids Health Dis ; 18(1): 71, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909920

RESUMO

BACKGROUND: Obesity increases the risk of developing diabetes mellitus. Clinical studies suggest that risk factors like palmitic acid (PA) and lipopolysaccharide (LPS) exist simultaneously in diabetes with obesity. Combination of PA and LPS even at low concentration can induce strong inflammatory reaction. Monocyte chemoattractant protein-1 (MCP-1) is an important inflammatory chemokine related to insulin resistance and type II diabetes. Our previous study using PCR array revealed that LPS and PA synergistically induce MCP-1 mRNA expression in macrophage cells RAW264.7, while the protein expression of MCP-1 in this case was not investigated. Moreover, the underling mechanism in the synergistic effect of MCP-1 expression or production induced by treatment of LPS and PA combination remains unclear. METHODS: Protein secretion of MCP-1 was measured by the enzyme-linked immunosorbent assay (ELISA) and mRNA levels of MCP-1 and Toll-like receptor 4 (TLR4) were measured by real-time PCR. Statistical analysis was conducted using SPSS software. RESULTS: LPS could increase MCP-1 transcription as well as secretion in RAW264.7, and PA amplified this effect obviously. Meanwhile, combination of LPS with PA increased TLR4 mRNA expression while LPS alone or PA alone could not, TLR4 knockdown inhibited MCP-1 transcription/secretion induced by LPS plus PA. Moreover, not NF-κB inhibitor but inhibitors of mitogen-activated protein kinase (MAPK) signaling pathways, including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAPK were found to block MCP-1 generation stimulated by LPS plus PA. CONCLUSION: LPS and PA synergistically induced MCP-1 secretion in RAW264.7 macrophage cells, in which MCP-1 transcription mediated by MAPK/TLR4 signaling pathways was involved. Combined treatment of PA and LPS in RAW264.7 cells mimics the situation of diabetes with obesity that has higher level of PA and LPS, MAPK/TLR4/ MCP-1 might be potential therapeutic targets for diabetes with obesity.


Assuntos
Quimiocina CCL2/genética , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 1/genética , Ácido Palmítico/farmacologia , Receptor 4 Toll-Like/genética , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/patologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
9.
Gastroenterol Hepatol ; 42(10): 614-621, 2019 Dec.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31495535

RESUMO

OBJECTIVES: AKR1B10, first cloned from liver cancer tissues, has recently been reported to be up-regulated significantly in hepatocellular carcinoma (HCC) tissues, but the relationship between serum level of AKR1B10 and the risk of HCC is not understood. METHODS: 170 HCC patients and 120 health donors from October 2014 to March 2017 were recruited in the affiliated hospital of Guilin Medical University. Serum AKR1B10 in all cases were detected and in 30 HCC patients were analyzed preoperatively and postoperatively by Time-resolved fluoroimmunoassay. RESULTS: The level of serum AKR1B10 was significantly higher in HCC patients (1800.24±2793.79) than in health donors (129.34±194.129), and downregulation of serum AKR1B10 in HCC patients was observed after hepatectomy. When samples were grouped according to the serum level of AKR1B10 (≥232.7pg/ml), serum AKR1B10 positively correlated to serum AFP (χ2=6.295, P=0.012), ALT (χ2=18.803, P=0.000), AST (χ2=33.421, P=0.000), tumor nodule number (χ2=6.777, P=0.009), cirrhosis (χ2=43.458, P=0.000), and tumor size (χ2=6.042, P=0.014) in the Chi-square test. CONCLUSIONS: Diagnosis of HCC could be improved using the both predictors of serum AKR1B10 and AFP. AKR1B10 was thus considered to be a new serological biomarker for HCC.


Assuntos
Aldo-Ceto Redutases/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , Adulto , Idoso , Carcinoma Hepatocelular/diagnóstico , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos
10.
Mol Carcinog ; 57(10): 1300-1310, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29846015

RESUMO

Aldo-keto reductase 1B10 (AKR1B10) is upregulated in breast cancer and promotes tumor growth and metastasis. However, little is known of the molecular mechanisms of action. Herein we report that AKR1B10 activates lipid second messengers to stimulate cell proliferation. Our data showed that ectopic expression of AKR1B10 in breast cancer cells MCF-7 promoted lipogenesis and enhanced levels of lipid second messengers, including phosphatidylinositol bisphosphate (PIP2), diacylglycerol (DAG), and inositol triphosphate (IP3). In contrast, silencing of AKR1B10 in breast cancer cells BT-20 and colon cancer cells HCT-8 led to decrease of these lipid messengers. Qualitative analyses by liquid chromatography-mass spectrum (LC-MS) revealed that AKR1B10 regulated the cellular levels of total DAG and majority of subspecies. This in turn modulated the phosphorylation of protein kinase C (PKC) isoforms PKCδ (Thr505), PKCµ (Ser744/748), and PKCα/ßII (Thr638/641) and activity of the PKC-mediated c-Raf/MEK/ERK signaling cascade. A pan inhibitor of PKC (Go6983) blocked ERK1/2 activation by AKR1B10. In these cells, phospho-p90RSK, phospho-MSK, and Cyclin D1 expression was increased by AKR1B10, and pharmacological inhibition of the ERK signaling cascade with MEK1/2 inhibitors U0126 and PD98059 eradicated induction of phospho-p90RSK, phospho-MSK, and Cyclin D1. In breast cancer cells, AKR1B10 promoted the clonogenic growth and proliferation of breast cancer cells in two-dimension (2D) and three-dimension (3D) cultures and tumor growth in immunodeficient female nude mice through activation of the PKC/ERK pathway. These data suggest that AKR1B10 stimulates breast cancer cell growth and proliferation through activation of DAG-mediated PKC/ERK signaling pathway.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase/metabolismo , Neoplasias da Mama/metabolismo , Diglicerídeos/metabolismo , Sistemas do Segundo Mensageiro , Membro B10 da Família 1 de alfa-Ceto Redutase/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Lipogênese , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos Nus , Proteína Quinase C/metabolismo , Transplante Heterólogo , Carga Tumoral
11.
J Immunol ; 196(7): 3168-79, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903480

RESUMO

Beyond its critical role in T cells, T-bet regulates the functions of APCs including dendritic cells and B cells, as well as NK cells. Given that recipient APCs are essential for priming allogeneic T cells and recipient NK or T cells are able to reject allogeneic donor cells, we evaluated the role of T-bet on the host in acute graft-versus-host disease (GVHD) using murine models of allogeneic bone marrow transplantation. T-bet(-/-) recipients developed significantly milder GVHD than their wild type counterparts in MHC-mismatched or CD4-dependent minor histocompatibility Ag-mismatched models. Allogeneic donor T cells, in particular, CD4 subset, significantly reduced IFN-γ production, proliferation and migration, and caused less injury in liver and gut of T-bet(-/-) recipients. We further observed that T-bet on recipient hematopoietic cells was primarily responsible for the donor T cell response and pathogenicity in GVHD. T-bet(-/-) dendritic cells expressed higher levels of Trail, whereas they produced lower levels of IFN-γ and IL-12/23 p40, as well as chemokine CXCL9, resulting in significantly higher levels of apoptosis, less priming, and infiltration of donor T cells. Meanwhile, NK cells in T-bet(-/-) hosts partially contribute to the decreased donor T cell proliferation. Furthermore, although T-bet on hematopoietic cells was required for GVHD development, it was largely dispensable for the graft-versus-leukemia effect. Taken together with our previous findings, we propose that T-bet is a potential therapeutic target for the control of GVHD through regulating donor T cells and recipient hematopoietic cells.


Assuntos
Células da Medula Óssea/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Doença Aguda , Animais , Transplante de Medula Óssea , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Efeito Enxerto vs Leucemia/genética , Efeito Enxerto vs Leucemia/imunologia , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Baço/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Doadores de Tecidos , Transplante Homólogo
12.
J BUON ; 23(6): 1711-1716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30610798

RESUMO

PURPOSE: Serum predictors for early diagnosis of hepatocellular carcinoma (HCC) have been investigated. Sphingosine-1-phosphate (S1P) has been widely reported to promote the survival of many types of cancer cells. However, the potential of serum S1P as a diagnostic marker in HCC has not been well characterized. The aim of this study was to identify the relationship between serum S1P and the risk of HCC. METHODS: We retrospectively reviewed serum S1P in 63 HCC patients and 39 normal people. Receiver operating characteristic (ROC) curve analysis was performed to define the cut-off value of S1P in the serum. Chi-square test, t-test and multivariate regression analysis were used to investigate the association between serum S1P and individual clinicopathologic parameters. RESULTS: S1P showed significantly higher level in healthy subjects (1.372±0.116 µM) than that in patients (1.372±0.116 µM). Serum S1P in HCC patients was positively correlated to globulin (t = -3.122, p=0.003), hepatitis B virus (HBV) DNA copies (x2=4.386, p=0.036) and negatively related to AST (x2=2.870, p=0.09). Besides, part of the amount of serum S1P was negatively correlated to albumin (correlation coefficient (ß) = -0.056) and positively correlated to alanine aminotransferase (ALT) (ß=0.016) according to the regression analysis. CONCLUSIONS: These results suggested that serum S1P could be used as an auxiliary marker for HCC diagnosis, and used to monitor HBV infection in patients with HCC.


Assuntos
Biomarcadores/sangue , Carcinoma Hepatocelular/sangue , Hepatite B/complicações , Neoplasias Hepáticas/sangue , Lisofosfolipídeos/sangue , Esfingosina/análogos & derivados , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/virologia , Seguimentos , Hepatite B/virologia , Vírus da Hepatite B/isolamento & purificação , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/virologia , Prognóstico , Curva ROC , Estudos Retrospectivos , Esfingosina/sangue
13.
Blood ; 126(11): 1314-23, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26138686

RESUMO

MicroRNAs (miRs) play important roles in orchestrating many aspects of the immune response. The miR-17-92 cluster, which encodes 6 miRs including 17, 18a, 19a, 20a, 19b-1, and 92-1, is among the best characterized of these miRs. The miR-17-92 cluster has been shown to regulate a variety of immune responses including infection, tumor, and autoimmunity, but the role of this cluster in T-cell response to alloantigens has not been previously explored. By using major histocompatibility complex (MHC)-matched, -mismatched, and haploidentical murine models of allogeneic bone marrow transplantation (allo-BMT), we demonstrate that the expression of miR-17-92 on donor T cells is essential for the induction of graft-versus-host disease (GVHD), but dispensable for the graft-versus-leukemia (GVL) effect. The miR-17-92 plays a major role in promoting CD4 T-cell activation, proliferation, survival, and Th1 differentiation, while inhibiting Th2 and iTreg differentiation. Alternatively, miR-17-92 may promote migration of CD8 T cells to GVHD target organs, but has minimal impact on CD8 T-cell proliferation, survival, or cytolytic function, which could contribute to the preserved GVL effect mediated by T cells deficient for miR-17-92. Furthermore, we evaluated a translational approach and found that systemic administration of antagomir to block miR-17 or miR-19b in this cluster significantly inhibited alloreactive T-cell expansion and interferon-γ (IFNγ) production, and prolonged the survival in recipients afflicted with GVHD while preserving the GVL effect. Taken together, the current work provides a strong rationale and demonstrates the feasibility to target miR-17-92 for the control of GVHD while preserving GVL activity after allo-BMT.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Leucemia Experimental/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Linfócitos T/imunologia , Aloenxertos , Animais , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/genética , Efeito Enxerto vs Leucemia/genética , Efeito Enxerto vs Leucemia/imunologia , Interferon gama/biossíntese , Leucemia Experimental/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/farmacologia
14.
Anticancer Drugs ; 28(10): 1141-1149, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28885267

RESUMO

Promising clinical efficacy has been observed with receptor tyrosine kinase inhibitors (TKIs) particularly in lung and gastric cancers with mutations or amplifications in the targeted receptor tyrosine kinases (RTKs). However, the efficacy and the duration of the response to these inhibitors are limited by the emergence of drug resistance. Here, we report treatment of RTK-dependent lung and gastric cancer cell lines with TKIs increased protein levels of Bcl-2 and Bcl-xL. The combination of the Bcl-2 and Bcl-xL inhibitor ABT-263 and TKIs was superior to TKIs alone in reducing cell viability and capacity of resistant colony formation. Furthermore, resistant cells established with exposure of RTK-dependent cells to increasing concentrations of TKIs also express higher levels of Bcl-2 or Bcl-xL compared with their parental cells. The combination of inhibitors of PI3K/AKT, MEK/ERK, and Bcl-2/Bcl-xL effectively reduced the viability of resistant cells and inhibited tumor size in a xenograft model derived from resistant cells by inducing apoptosis. Our results define a generalizable resistance mechanism to TKIs and rationalize inhibition of Bcl-2 and Bcl-xL as a strategy to augment responses and blunt acquired resistance to TKIs in lung and gastric cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Proteína bcl-X/metabolismo , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Distribuição Aleatória , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/metabolismo , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores
15.
Biometals ; 30(6): 903-915, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993927

RESUMO

Rhodium (II) complex with 2-benzoylpyridine (Rh(L)2Cl2) is a new, synthetic, active metal-complex, which is produced by the reaction of 2-benzoylpyridine (L) with rhodium chloride hydrate (RhCl3·nH2O). The crystal structure was determined by X-ray diffraction which is mono-nuclear. In order to explore the biological properties of the novel complex, a series of studies were performed. The results showed that Rh(L)2Cl2 had the anti-tumor activity in HepG2 and other cell lines and has been shown to induce G1 cell cycle arrest and apoptosis in HepG2 cells. The anti-cancer effect of Rh(L)2Cl2 is regulated by increased expression of caspase-3 and PARP via the mitochondrial and the death receptor pathways. Bcl-2 family proteins might play an important role in the Rh(L)2Cl2-induced changes in these two pathways. Further studies indicated that Rh(L)2Cl2 increased the level of reactive oxygen species (ROS), but that Rh(L)2Cl2-induced apoptosis was ROS-independent. In conclusion, Rh(L)2Cl2 is a potential new anti-tumor drug, which induces HepG2 cell death via the mitochondrial and death receptor pathways and has no obvious toxicity to normal liver cell.


Assuntos
Antineoplásicos/farmacologia , Compostos Organometálicos/farmacologia , Ródio/química , Ródio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Cristalografia por Raios X , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Organometálicos/química , Proteínas Proto-Oncogênicas c-bcl-2 , Piridinas/química , Espécies Reativas de Oxigênio/metabolismo
16.
Endocr J ; 64(8): 767-776, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28674283

RESUMO

Neutral ceramidase (NCDase) is a class of ceramidases, a key enzyme in ceramide degradation. Recently, it was observed that NCDase activity was suppressed by saturated fatty acids to increase ceramide content in rat muscle. However, little is known about its changes in activity and roles in palmitate (Palm)-induced lipotoxicity in pancreatic ß cells. Here, we demonstrated that Palm treatment significantly down-regulated NCDase activity, mRNA and protein levels in rat INS-1 cells. In addition, Palm caused a significant accumulation of ceramide, while SPH level remained unchanged, suggesting that inhibition of NCDase activity led to no change of SPH level after treatment with Palm for 24 h. Furthermore, NCDase overexpression significantly reduced Palm-induced apoptosis in INS-1 cells. Conversely, NCDase siRNA knockdown markedly exacerbated Palm-induced apoptosis. In conclusion, Palm treatment suppressed the activity of NCDase and down-regulated its mRNA and protein expression. Furthermore, NCDase inhibition was involved in Palm-induced apoptosis by blocking ceramide degradation in INS-1 cells.


Assuntos
Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ceramidase Neutra/metabolismo , Ácido Palmítico/farmacologia , Pâncreas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/enzimologia , Pâncreas/citologia , Pâncreas/enzimologia , Ratos
17.
Apoptosis ; 21(9): 1033-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27364952

RESUMO

In this study, results showed that the inhibition of PA-induced HepG2 cell growth takes place in a time- and concentration-dependent manner, that activation of caspase 9 is necessary for PA-induced HepG2 cell apoptosis, that dihydroceramide desaturase 1 (DES1) plays a key role in PA-mediated caspase 9 and caspase 3 activation, and that palmitoleic acid (POA), an omega-7 monounsaturated fatty acid, reverses PA-induced apoptosis through DES1 â†’ Ceramide â†’ Caspase 9 â†’ Caspase 3 signaling.


Assuntos
Apoptose , Caspase 9/metabolismo , Ceramidas/metabolismo , Oxirredutases/metabolismo , Ácido Palmítico/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Ativação Enzimática , Células Hep G2 , Humanos , Oxirredutases/genética
18.
BMC Oral Health ; 15: 145, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581717

RESUMO

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) have increased severity of periodontitis. Toll-like receptor (TLR)4, its co-receptors CD14 and MD-2, and adaptor MyD88 play pivotal roles in lipopolysaccharide (LPS)-triggered tissue inflammation and periodontitis. This study investigated the effects of T2DM and periodontitis on TLR4, CD14, MD-2 and MyD88 mRNA expression in surgically removed periodontal tissues. METHODS: Periodontal tissue specimens were collected from 14 patients without periodontitis and T2DM (Group 1), 15 patients with periodontitis alone (Group 2), and 7 patients with both periodontitis and T2DM (Group 3). The mRNA of TLR4, CD14, MD-2 and MyD88 was quantified using real-time PCR and compared between the groups. RESULTS: Statistical analysis showed that periodontal expression of CD14 mRNA was significantly reduced across Groups 1, 2 and 3 (p = 0.02) whereas the mRNA expression of TLR4, MD-2 and MyD88 was not significantly different among the groups. Furthermore, when patients in Groups 1 and 2 were combined (n = 22), the CD14 mRNA expression was significantly lower than that in patients of Group 1 (p = 0.04). CONCLUSIONS: CD14 mRNA expression was downregulated across patients with neither periodontitis nor T2DM, patients with periodontitis alone and patients with both diseases, suggesting that CD14 mRNA expression is associated with a favorable host response or subjected to a negative feedback regulation.


Assuntos
Periodontite Crônica , Diabetes Mellitus Tipo 2 , Receptores de Lipopolissacarídeos , Periodontite Crônica/complicações , Periodontite Crônica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/metabolismo
19.
Exp Mol Med ; 56(4): 946-958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556546

RESUMO

Acute liver injury is the basis of the pathogenesis of diverse liver diseases. However, the mechanism underlying liver injury is complex and not completely understood. In our study, we revealed that CERK, which phosphorylates ceramide to produce ceramide-1-phosphate (C1P), was the sphingolipid pathway-related protein that had the most significantly upregulated expression during acute liver injury. A functional study confirmed that CERK and C1P attenuate hepatic injury both in vitro and in vivo through antioxidant effects. Mechanistic studies have shown that CERK and C1P positively regulate the protein expression of NRF2, which is a crucial protein that helps maintain redox homeostasis. Furthermore, our results indicated that C1P disrupted the interaction between NRF2 and KEAP1 by competitively binding to KEAP1, which allowed for the nuclear translocation of NRF2. In addition, pull-down assays and molecular docking analyses revealed that C1P binds to the DGR domain of KEAP1, which allows it to maintain its interaction with NRF2. Importantly, these findings were verified in human primary hepatocytes and a mouse model of hepatic ischemia‒reperfusion injury. Taken together, our findings demonstrated that CERK-mediated C1P metabolism attenuates acute liver injury via the binding of C1P to the DGR domain of KEAP1 and subsequently the release and nuclear translocation of NRF2, which activates the transcription of cytoprotective and antioxidant genes. Our study suggested that the upregulation of CERK and C1P expression may serve as a potential antioxidant strategy to alleviate acute liver injury.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Humanos , Masculino , Camundongos , Ceramidas/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica
20.
Biochim Biophys Acta ; 1821(12): 1453-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22906436

RESUMO

A previous data showed that the hypoxia mimetic compound CoCl(2) induced cleavage of HuR and subsequent apoptosis in human oral cancer cells. We also previously demonstrated that exposure of NT-2 human neuronal precursor cells to hypoxia resulted in changes in sphingolipid levels and apoptosis. Since it is known that CoCl(2) induces cleavage of HuR, we investigated whether there is a link between HuR cleavage and the observed sphingolipid changes in cells exposed to hypoxia, and whether this link is associated with the induction of apoptosis. Exposure of hepatocytes to direct hypoxia by means of a hypoxic chamber resulted in acid sphingomyelinase activation and ceramide elevation. The elevation in ceramide levels was associated with activation of caspase 5 and the subsequent cleavage of HuR and apoptotic cell death. These data raise the possibility that acid sphingomyelinase and caspase 5 are each potential targets for treating hypoxia (ischemia)-induced liver injury.


Assuntos
Apoptose , Caspases/metabolismo , Proteínas ELAV/metabolismo , Hepatócitos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Western Blotting , Caspases/genética , Hipóxia Celular , Células Cultivadas , Ceramidas/metabolismo , Ativação Enzimática , Expressão Gênica , Hepatócitos/citologia , Humanos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingomielina Fosfodiesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA