Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(9): e109890, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35243676

RESUMO

Endothelial cells differ from other cell types responsible for the formation of the vascular wall in their unusual reliance on glycolysis for most energy needs, which results in extensive production of lactate. We find that endothelium-derived lactate is taken up by pericytes, and contributes substantially to pericyte metabolism including energy generation and amino acid biosynthesis. Endothelial-pericyte proximity is required to facilitate the transport of endothelium-derived lactate into pericytes. Inhibition of lactate production in the endothelium by deletion of the glucose transporter-1 (GLUT1) in mice results in loss of pericyte coverage in the retina and brain vasculatures, leading to the blood-brain barrier breakdown and increased permeability. These abnormalities can be largely restored by oral lactate administration. Our studies demonstrate an unexpected link between endothelial and pericyte metabolisms and the role of endothelial lactate production in the maintenance of the blood-brain barrier integrity. In addition, our observations indicate that lactate supplementation could be a useful therapeutic approach for GLUT1 deficiency metabolic syndrome patients.


Assuntos
Barreira Hematoencefálica , Pericitos , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Pericitos/metabolismo
2.
Angiogenesis ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955953

RESUMO

The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.

4.
Blood ; 138(21): 2117-2128, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34115847

RESUMO

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood. Here we present 3 unrelated Korean SDS patients who carry biallelic pathogenic variants in EFL1 with biased allele frequencies, resulting from a bone marrow-specific somatic uniparental disomy in chromosome 15. The recombination events generated cells that were homozygous for the relatively milder variant, allowing for the evasion of catastrophic physiologic consequences. However, the milder EFL1 variant was still solely able to impair 80S ribosome assembly and induce SDS features in cell line and animal models. The loss of EFL1 resulted in a pronounced inhibition of terminal oligopyrimidine element-containing ribosomal protein transcript 80S assembly. Therefore, we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually leads to aberrant translational control and ribosomopathy.


Assuntos
Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Síndrome de Shwachman-Diamond/genética , Dissomia Uniparental/genética , Adulto , Alelos , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação Puntual
5.
FASEB J ; 36(1): e22103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921695

RESUMO

Ubiquitination has been shown to provide an essential regulatory role in modulating the duration and amplitude of the signaling activity in angiogenesis. While successive enzymatic reactions mediated by three distinct types of enzymes commonly known as E1, E2, and E3 are required for ubiquitination, the role of E3s which govern the final step of ubiquitination has been extensively analyzed in angiogenesis. In contrast, the role of E2s, which determine the context and functional consequences of ubiquitination, remains largely unknown with respect to angiogenesis. To better elucidate the role of E2s in modulating endothelial behaviors during angiogenesis, we first systematically analyze the expression pattern of E2s in endothelial cells (ECs) using previously published scRNA-seq data and identify ubiquitin-conjugating enzyme variant 1 (UBE2V1), an unconventional E2 without innate catalytic activity, as one of the most abundantly expressed E2s in ECs. While ubiquitously expressed in diverse cell types, abrogation of UBE2V1 significantly impairs proliferation and viability of human umbilical vein endothelial cells (HUVECs) without affecting other cell types, suggesting that UBE2V1 is likely to possess nonredundant functions in ECs. Consistent with this idea, UBE2V1 appears to be critical for morphogenesis and migration of ECs during angiogenesis. Interestingly, we find that UBE2V1 is essential for fibroblast growth factor 2 (FGF2)-induced angiogenesis, but appears to have minor effects on vascular endothelial growth factor-A-induced angiogenesis in vitro as well as in vivo. Therefore, it seems that UBE2V1 could enable ECs to distinguish two related yet distinct angiogenic cues. Mechanistically, we show that UBE2V1 promotes ubiquitination of MEK kinase 1, a key mediator of FGF2 signaling, to enhance phosphorylation of extracellular signal-regulated kinase 1/2 in HUVECs. Taken together, our results illustrate the unique role of UBE2V1 as a key modulator for angiogenic behaviors in ECs.


Assuntos
Proliferação de Células , Endotélio Vascular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células PC-3 , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/genética
6.
Nature ; 545(7653): 224-228, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467822

RESUMO

Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicólise , Neovascularização Fisiológica , Transdução de Sinais , Animais , Movimento Celular , Proliferação de Células , Feminino , Hexoquinase/metabolismo , Linfangiogênese , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
7.
Circulation ; 144(16): 1308-1322, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34474596

RESUMO

BACKGROUND: Angiogenesis is a dynamic process that involves expansion of a preexisting vascular network that can occur in a number of physiological and pathological settings. Despite its importance, the origin of the new angiogenic vasculature is poorly defined. In particular, the primary subtype of endothelial cells (capillary, venous, arterial) driving this process remains undefined. METHODS: Endothelial cells were fate-mapped with the use of genetic markers specific to arterial and capillary cells. In addition, we identified a novel venous endothelial marker gene (Gm5127) and used it to generate inducible venous endothelium-specific Cre and Dre driver mouse lines. Contributions of these various types of endothelial cells to angiogenesis were examined during normal postnatal development and in disease-specific setting. RESULTS: Using a comprehensive set of endothelial subtype-specific inducible reporter mice, including tip, arterial, and venous endothelial reporter lines, we showed that venous endothelial cells are the primary endothelial subtype responsible for the expansion of an angiogenic vascular network. During physiological angiogenesis, venous endothelial cells proliferate, migrating against the blood flow and differentiating into tip, capillary, and arterial endothelial cells of the new vasculature. Using intravital 2-photon imaging, we observed venous endothelial cells migrating against the blood flow to form new blood vessels. Venous endothelial cell migration also plays a key role in pathological angiogenesis. This was observed both in formation of arteriovenous malformations in mice with inducible endothelium-specific Smad4 deletion mice and in pathological vessel growth seen in oxygen-induced retinopathy. CONCLUSIONS: Our studies establish that venous endothelial cells are the primary endothelial subtype responsible for normal expansion of vascular networks, formation of arteriovenous malformations, and pathological angiogenesis. These observations highlight the central role of the venous endothelium in normal development and disease pathogenesis.


Assuntos
Células Endoteliais/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Neovascularização Patológica
8.
FASEB J ; 35(3): e21386, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33565137

RESUMO

Bone Morphogenetic Protein (BMP) signaling regulates diverse biological processes. Upon ligand binding, BMP receptors (BMPRs) phosphorylate SMAD1/5 and other noncanonical downstream effectors to induce transcription of downstream targets. However, the precise role of individual BMP receptors in this process remains largely unknown due to the complexity of downstream signaling and the innate promiscuity of ligand-receptor interaction. To delineate unique downstream effectors of individual BMPR1s, we analyzed the transcriptome of human umbilical endothelial cells (HUVECs) expressing three distinct constitutively active BMPR1s of which expression was detected in endothelial cells (ECs). From our analyses, we identified a number of novel downstream targets of BMPR1s in ECs. More importantly, we found that each BMPR1 possesses a distinctive set of downstream effectors, suggesting that each BMPR1 is likely to retain unique function in ECs. Taken together, our analyses suggest that each BMPR1 regulates downstream targets non-redundantly in ECs to create context-dependent outcomes of the BMP signaling.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/fisiologia , Perfilação da Expressão Gênica/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores de Ativinas Tipo I/genética , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Smad1/fisiologia , Proteína Smad5/fisiologia
9.
Nature ; 535(7611): 294-8, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411634

RESUMO

Vascular and haematopoietic cells organize into specialized tissues during early embryogenesis to supply essential nutrients to all organs and thus play critical roles in development and disease. At the top of the haemato-vascular specification cascade lies cloche, a gene that when mutated in zebrafish leads to the striking phenotype of loss of most endothelial and haematopoietic cells and a significant increase in cardiomyocyte numbers. Although this mutant has been analysed extensively to investigate mesoderm diversification and differentiation and continues to be broadly used as a unique avascular model, the isolation of the cloche gene has been challenging due to its telomeric location. Here we used a deletion allele of cloche to identify several new cloche candidate genes within this genomic region, and systematically genome-edited each candidate. Through this comprehensive interrogation, we succeeded in isolating the cloche gene and discovered that it encodes a PAS-domain-containing bHLH transcription factor, and that it is expressed in a highly specific spatiotemporal pattern starting during late gastrulation. Gain-of-function experiments show that it can potently induce endothelial gene expression. Epistasis experiments reveal that it functions upstream of etv2 and tal1, the earliest expressed endothelial and haematopoietic transcription factor genes identified to date. A mammalian cloche orthologue can also rescue blood vessel formation in zebrafish cloche mutants, indicating a highly conserved role in vertebrate vasculogenesis and haematopoiesis. The identification of this master regulator of endothelial and haematopoietic fate enhances our understanding of early mesoderm diversification and may lead to improved protocols for the generation of endothelial and haematopoietic cells in vivo and in vitro.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Sequência Conservada , Epistasia Genética , Deleção de Genes , Sequências Hélice-Alça-Hélice , Hematopoese , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Mutação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
10.
Biochem Biophys Res Commun ; 534: 359-366, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256983

RESUMO

Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish. We have identified that Pax9, which is an essential regulator for odontogenesis and palatogenesis, is selectively localized within a single cluster of the hematopoietic lineage. To further analyze the function of Pax9 in hematopoiesis, we generated two independent pax9 knock-out mutants using the CRISPR-Cas9 technique. We found that Pax9 appears to be an essential regulator for granulopoiesis but dispensable for erythropoiesis during development, as lack of pax9 selectively decreased the number of neutrophils with a concomitant decrease in the expression level of neutrophil markers. In addition, embryos, where pax9 was functionally disrupted by injecting morpholinos, failed to increase the number of neutrophils in response to pathogenic bacteria, suggesting that Pax9 is not only essential for developmental granulopoiesis but also emergency granulopoiesis. Due to the inability to initiate emergency granulopoiesis, innate immune responses were severely compromised in pax9 morpholino-mediated embryos, increasing their susceptibility and mortality. Taken together, our data indicate that Pax9 is essential for granulopoiesis and promotes innate immunity in zebrafish larvae.


Assuntos
Eritropoese/imunologia , Mielopoese/imunologia , Fator de Transcrição PAX9/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Infecções Bacterianas/imunologia , Sistemas CRISPR-Cas , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Granulócitos/imunologia , Imunidade Inata/genética , Imunidade Inata/fisiologia , Mielopoese/genética , Fator de Transcrição PAX9/deficiência , Fator de Transcrição PAX9/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
11.
Biochem Biophys Res Commun ; 530(4): 638-643, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768193

RESUMO

Hyperlipidemia is an abnormal elevation of lipid level in blood, which affects more than 100 million people in US. Zebrafish has recently emerged as a model to study pathophysiology associated with hyperlipidemia. As a poikilotherm, the innate response toward a high fat diet regimen in zebrafish is likely to be distinct from humans, and therefore, additional caution is warranted to appropriately interpret results obtained from zebrafish model. However, to date, detailed comparative analyses on similarities and dissimilarities between zebrafish and mammals, in particular, at molecular level, have not been reported yet. Here, we identified changes in hepatic specific transcriptomic profiles of zebrafish fed with a high fat diet regimen and comparatively analyzed transcriptomic changes in zebrafish and mice. While a number of previously identified risk factors for human hyperlipidemia has been upregulated in zebrafish fed with a high fat diet regimen, zebrafish hepatic transcriptome does not share high similarity with mice. Despite these differences, KEGG pathway analyses revealed that similar signaling pathways upregulated in zebrafish and mice as a response to a high fat diet. Our data show that these two species may utilize species-specific set of genes to upregulate common signaling pathways, indicating evolutionary convergence between poikilotherm and homeotherm in regulating lipid metabolism and validating the use of zebrafish as a model for human hyperlipidemia and associated diseases.


Assuntos
Metabolismo dos Lipídeos , Camundongos/genética , Transcriptoma , Peixe-Zebra/genética , Animais , Evolução Biológica , Dieta Hiperlipídica , Ontologia Genética , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Lipídeos/genética , Camundongos/metabolismo , Peixe-Zebra/metabolismo
12.
Circulation ; 135(23): 2288-2298, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28356442

RESUMO

BACKGROUND: Bone morphogenetic protein (BMP) signaling has multiple roles in the development and function of the blood vessels. In humans, mutations in BMP receptor type 2 (BMPR2), a key component of BMP signaling, have been identified in the majority of patients with familial pulmonary arterial hypertension (PAH). However, only a small subset of individuals with BMPR2 mutation develops PAH, suggesting that additional modifiers of BMPR2 function play an important role in the onset and progression of PAH. METHODS: We used a combination of studies in zebrafish embryos and genetically engineered mice lacking endothelial expression of Vegfr3 to determine the interaction between vascular endothelial growth factor receptor 3 (VEGFR3) and BMPR2. Additional in vitro studies were performed by using human endothelial cells, including primary lung endothelial cells from subjects with PAH. RESULTS: Attenuation of Vegfr3 in zebrafish embryos abrogated Bmp2b-induced ectopic angiogenesis. Endothelial cells with disrupted VEGFR3 expression failed to respond to exogenous BMP stimulation. Mechanistically, VEGFR3 is physically associated with BMPR2 and facilitates ligand-induced endocytosis of BMPR2 to promote phosphorylation of SMADs and transcription of ID genes. Conditional, endothelial-specific deletion of Vegfr3 in mice resulted in impaired BMP signaling responses, and significantly worsened hypoxia-induced pulmonary hypertension. Consistent with these data, we found significant decrease in VEGFR3 expression in pulmonary arterial endothelial cells from human PAH subjects, and reconstitution of VEGFR3 expression in PAH pulmonary arterial endothelial cells restored BMP signaling responses. CONCLUSIONS: Our findings identify VEGFR3 as a key regulator of endothelial BMPR2 signaling and a potential determinant of PAH penetrance in humans.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Endotélio Vascular/metabolismo , Hipertensão Pulmonar/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Endotélio Vascular/patologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra
13.
Arterioscler Thromb Vasc Biol ; 37(4): 657-663, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28232325

RESUMO

OBJECTIVE: Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2, and Alk3 in mouse retinal vessels. APPROACH AND RESULTS: Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2. Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. CONCLUSIONS: Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Células Endoteliais/efeitos dos fármacos , Artéria Retiniana/efeitos dos fármacos , Neovascularização Retiniana , Receptores de Ativinas Tipo I/deficiência , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Artéria Retiniana/metabolismo , Transdução de Sinais
14.
Circ Res ; 114(1): 56-66, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24122719

RESUMO

RATIONALE: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. OBJECTIVE: Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. METHODS AND RESULTS: BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2 signaling in zebrafish embryos and mouse embryonic stem cell-derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox protein 1 during development. CONCLUSIONS: Our data identify BMP2 as a key negative regulator for the emergence of the lymphatic lineage during vertebrate development.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Endotélio Linfático/embriologia , Endotélio Linfático/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Vasos Linfáticos/embriologia , Vasos Linfáticos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Smad/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
15.
Circ Res ; 113(1): 22-31, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23603510

RESUMO

RATIONALE: The peptide ligand apelin and its receptor APJ constitute a signaling pathway with numerous effects on the cardiovascular system, including cardiovascular development in model organisms such as xenopus and zebrafish. OBJECTIVE: This study aimed to characterize the embryonic lethal phenotype of the Apj-/- mice and to define the involved downstream signaling targets. METHODS AND RESULTS: We report the first characterization of the embryonic lethality of the Apj-/- mice. More than half of the expected Apj-/- embryos died in utero because of cardiovascular developmental defects. Those succumbing to early embryonic death had markedly deformed vasculature of the yolk sac and the embryo, as well as poorly looped hearts with aberrantly formed right ventricles and defective atrioventricular cushion formation. Apj-/- embryos surviving to later stages demonstrated incomplete vascular maturation because of a deficiency of vascular smooth muscle cells and impaired myocardial trabeculation and ventricular wall development. The molecular mechanism implicates a novel, noncanonical signaling pathway downstream of apelin-APJ involving Gα13, which induces histone deacetylase (HDAC) 4 and HDAC5 phosphorylation and cytoplasmic translocation, resulting in activation of myocyte enhancer factor 2. Apj-/- mice have greater endocardial Hdac4 and Hdac5 nuclear localization and reduced expression of the myocyte enhancer factor 2 (MEF2) transcriptional target Krüppel-like factor 2. We identify a number of commonly shared transcriptional targets among apelin-APJ, Gα13, and MEF2 in endothelial cells, which are significantly decreased in the Apj-/- embryos and endothelial cells. CONCLUSIONS: Our results demonstrate a novel role for apelin-APJ signaling as a potent regulator of endothelial MEF2 function in the developing cardiovascular system.


Assuntos
Anormalidades Cardiovasculares/embriologia , Sistema Cardiovascular/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fatores de Regulação Miogênica/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transporte Ativo do Núcleo Celular , Adipocinas , Animais , Apelina , Receptores de Apelina , Anormalidades Cardiovasculares/genética , Endocárdio/embriologia , Endocárdio/metabolismo , Endotélio Vascular/metabolismo , Feminino , Coração Fetal/anormalidades , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Histona Desacetilases/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Transcrição Gênica
16.
Arterioscler Thromb Vasc Biol ; 34(9): 1838-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25060789

RESUMO

Endothelial cells are a highly diverse group of cells which display distinct cellular responses to exogenous stimuli. Although the aptly named vascular endothelial growth factor-A signaling pathway is hailed as the most important signaling input for endothelial cells, additional factors also participate in regulating diverse aspects of endothelial behaviors and functions. Given this heterogeneity, these additional factors seem to play a critical role in creating a custom-tailored environment to regulate behaviors and functions of distinct subgroups of endothelial cells. For instance, molecular cues that modulate morphogenesis of arterial vascular beds can be distinct from those that govern morphogenesis of venous vascular beds. Recently, we have found that bone morphogenetic protein signaling selectively promotes angiogenesis from venous vascular beds without eliciting similar responses from arterial vascular beds in zebrafish, indicating that bone morphogenetic protein signaling functions as a context-dependent regulator during vascular morphogenesis. In this review, we will provide an overview of the molecular mechanisms that underlie proangiogenic effects of bone morphogenetic protein signaling on venous vascular beds in the context of endothelial heterogeneity and suggest a more comprehensive picture of the molecular mechanisms of vascular morphogenesis during development.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Veias/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Especificidade de Órgãos , Receptores Notch/fisiologia , Proteínas Smad/fisiologia , Especificidade da Espécie , Fator A de Crescimento do Endotélio Vascular/fisiologia , Peixe-Zebra/embriologia
17.
Arterioscler Thromb Vasc Biol ; 34(2): 338-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311379

RESUMO

OBJECTIVE: Apelin and its cognate receptor Aplnr/Apj are essential for diverse biological processes. However, the function of Apelin signaling in lymphatic development remains to be identified, despite the preferential expression of Apelin and Aplnr within developing blood and lymphatic endothelial cells in vertebrates. In this report, we aim to delineate the functions of Apelin signaling during lymphatic development. APPROACH AND RESULTS: We investigated the functions of Apelin signaling during lymphatic development using zebrafish embryos and found that attenuation of Apelin signaling substantially decreased the formation of the parachordal vessel and the number of lymphatic endothelial cells within the developing thoracic duct, indicating an essential role of Apelin signaling during the early phase of lymphatic development. Mechanistically, we found that abrogation of Apelin signaling selectively attenuates lymphatic endothelial serine-threonine kinase Akt 1/2 phosphorylation without affecting the phosphorylation status of extracellular signal-regulated kinase 1/2. Moreover, lymphatic abnormalities caused by the reduction of Apelin signaling were significantly exacerbated by the concomitant partial inhibition of serine-threonine kinase Akt/protein kinase B signaling. Apelin and vascular endothelial growth factor-C (VEGF-C) signaling provide a nonredundant activation of serine-threonine kinase Akt/protein kinase B during lymphatic development because overexpression of VEGF-C or apelin was unable to rescue the lymphatic defects caused by the lack of Apelin or VEGF-C, respectively. CONCLUSIONS: Taken together, our data present compelling evidence suggesting that Apelin signaling regulates lymphatic development by promoting serine-threonine kinase Akt/protein kinase B activity in a VEGF-C/VEGF receptor 3-independent manner during zebrafish embryogenesis.


Assuntos
Quimiocinas/metabolismo , Linfangiogênese , Transdução de Sinais , Ducto Torácico/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apelina , Receptores de Apelina , Células Cultivadas , Quimiocinas/genética , Células Endoteliais/metabolismo , Endotélio Linfático/embriologia , Endotélio Linfático/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ducto Torácico/embriologia , Fatores de Tempo , Transfecção , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
Circ Res ; 111(5): 564-74, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22777006

RESUMO

RATIONALE: Among the extracellular modulators of Bmp (bone morphogenetic protein) signaling, Bmper (Bmp endothelial cell precursor-derived regulator) both enhances and inhibits Bmp signaling. Recently we found that Bmper modulates Bmp4 activity via a concentration-dependent, endocytic trap-and-sink mechanism. OBJECTIVE: To investigate the molecular mechanisms required for endocytosis of the Bmper/Bmp4 and signaling complex and determine the mechanism of Bmper's differential effects on Bmp4 signaling. METHODS AND RESULTS: Using an array of biochemical and cell biology techniques, we report that LRP1 (LDL receptor-related protein 1), a member of the LDL receptor family, acts as an endocytic receptor for Bmper and a coreceptor of Bmp4 to mediate the endocytosis of the Bmper/Bmp4 signaling complex. Furthermore, we demonstrate that LRP1-dependent Bmper/Bmp4 endocytosis is essential for Bmp4 signaling, as evidenced by the phenotype of lrp1-deficient zebrafish, which have abnormal cardiovascular development and decreased Smad1/5/8 activity in key vasculogenic structures. CONCLUSIONS: Together, these data reveal a novel role for LRP1 in the regulation of Bmp4 signaling by regulating receptor complex endocytosis. In addition, these data introduce LRP1 as a critical regulator of vascular development. These observations demonstrate Bmper's ability to fine-tune Bmp4 signaling at the single-cell level, unlike the spatial regulatory mechanisms applied by other Bmp modulators.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Transporte/metabolismo , Endocitose/fisiologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Movimento Celular/fisiologia , Células Endoteliais/citologia , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Fenótipo , RNA Interferente Pequeno/genética , Receptores de LDL/genética , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
19.
Andrology ; 12(2): 447-458, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37290397

RESUMO

BACKGROUND: The odds of erectile dysfunction are three times more prevalent in diabetes. Severe peripheral vascular and neural damage in diabetic patients responds poorly to phosphodiesterase-5 (PDE5) inhibitors. However, bone morphogenetic protein 2 is known to be involved in angiogenesis. OBJECTIVES: To assess the efficacy of bone morphogenetic protein 2 in stimulating angiogenesis and augmenting nerve regeneration in a mouse model of diabetic-induced erectile dysfunction. MATERIALS AND METHODS: The induction of diabetes mellitus was performed by streptozotocin (50 mg/kg daily) administered intraperitoneally for 5 successive days to male C57BL/6 mice that were 8 weeks old. Eight weeks post-inductions, animals were allocated to one of five groups: a control group, a streptozotocin-induced diabetic mouse group receiving two intracavernous 20 µL phosphate-buffered saline injections, or one of three bone morphogenetic protein 2 groups administered two injections of bone morphogenetic protein 2 protein (1, 5, or 10 µg) diluted in 20 µL of phosphate-buffered saline within a 3-day interval between the first and second injections. The erectile functions were assessed 2 weeks after phosphate-buffered saline or bone morphogenetic protein 2 protein injections by recording the intracavernous pressure through cavernous nerve electrical stimulation. Angiogenic activities and nerve regenerating effects of bone morphogenetic protein 2 were determined in penile tissues, aorta, vena cava, the main pelvic ganglions, the dorsal roots, and from the primary cultured mouse cavernous endothelial cells. Moreover, fibrosis-related factor protein expressions were evaluated by western blotting. RESULTS: Erectile function recovery to 81% of the control value in diabetic mice was found with intracavernous bone morphogenetic protein 2 injection (5 µg/20 µL). Pericytes and endothelial cells were extensively restored. It was confirmed that angiogenesis was promoted in the corpus cavernosum of diabetic mice treated with bone morphogenetic protein 2 through increased ex vivo sprouting of aortic rings, vena cava and penile tissues, and migration and tube formation of mouse cavernous endothelial cells. Bone morphogenetic protein 2 protein enhanced cell proliferation and reduced apoptosis in mouse cavernous endothelial cells and penile tissues, and promoted neurite outgrowth in major pelvic ganglia and dorsal root ganglia under high-glucose conditions. Furthermore, bone morphogenetic protein 2 suppressed fibrosis by reducing mouse cavernous endothelial cell fibronectin, collagen 1, and collagen 4 levels under high-glucose conditions. CONCLUSION: Bone morphogenetic protein 2 modulates neurovascular regeneration and inhibits fibrosis to revive the mouse erection function in diabetic conditions. Our findings propose that the bone morphogenetic protein 2 protein represents a novel and promising approach to treating diabetes-related erectile dysfunction.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Animais , Humanos , Masculino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Colágeno/metabolismo , Colágeno/farmacologia , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Ereção Peniana , Pênis , Fosfatos/metabolismo , Fosfatos/farmacologia , Estreptozocina
20.
Semin Cell Dev Biol ; 22(9): 1012-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22008724

RESUMO

Bone Morphogenetic Protein (BMP) signaling has been implicated in diverse biological processes. Although how BMP signaling regulates behaviors of endothelial cells during angiogenesis are not fully understood, increasing evidence indicate functions of BMP signaling components are essential in developmental and pathological angiogenesis. Here we review recent advances in delineating the functions of BMP signaling during angiogenesis. In addition, we discuss downstream pathways that transduce BMP signaling in endothelial cells, and factors that modulate BMP signaling response in endothelial cells. Finally, we provide recent insight on how BMP signaling functions as a context dependent angiogenic cue.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Vertebrados/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Endoteliais/citologia , Humanos , Morfogênese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA