Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Immunol ; 209(5): 916-925, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922064

RESUMO

Thymocytes need to proliferate into a significant cell mass to allow a subsequent selection process during the double-positive (DP) stage. However, it is not clear at what stage this massive cell proliferation occurs. Immature CD8 single-positive (ISP) cells are a well-defined thymocyte subpopulation. However, the function of this cell subset has not yet been characterized. In this study, we analyzed the transcription pattern of mouse ISP cells and observed higher expression levels of cell cycling genes. We also found out that ISP cells exhibited the highest cell proliferative capacity among thymocytes in different developmental stages. Nuclear protein ataxia-telangiectasia (NPAT/p220) is one of the highly expressed cell cycling genes in ISP cells, which is known to play a critical role in coordinating histone gene expression necessary for rapid cell proliferation. Selective deletion of NPAT at the ISP stage led to reduced thymus size and significant loss of DP cells, secondary to reduced histone gene expression and impaired ISP cell proliferation capacity. A block of thymocyte development at the ISP stage was also observed, which was due to increased IL-7R expression. Continuous IL-7R signal served as a compensating mechanism for cell proliferation upon NPAT deletion, but in turn inhibited the expression of transcription factors TCF-1 and LEF-1, which is essential for the transition of ISP to DP cells. In summary, our study revealed the proliferation capacity of the ISP subpopulation during thymocyte differentiation as well as a vital role of NPAT in this developmental stage.


Assuntos
Histonas , Timócitos , Animais , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Histonas/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Timócitos/metabolismo , Timo/metabolismo
2.
Nucleic Acids Res ; 50(D1): D1244-D1254, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34606616

RESUMO

T-cell receptors (TCRs) and B-cell receptors (BCRs) are critical in recognizing antigens and activating the adaptive immune response. Stochastic V(D)J recombination generates massive TCR/BCR repertoire diversity. Single-cell immune profiling with transcriptome analysis allows the high-throughput study of individual TCR/BCR clonotypes and functions under both normal and pathological settings. However, a comprehensive database linking these data is not yet readily available. Here, we present the human Antigen Receptor database (huARdb), a large-scale human single-cell immune profiling database that contains 444 794 high confidence T or B cells (hcT/B cells) with full-length TCR/BCR sequence and transcriptomes from 215 datasets. All datasets were processed in a uniform workflow, including sequence alignment, cell subtype prediction, unsupervised cell clustering, and clonotype definition. We also developed a multi-functional and user-friendly web interface that provides interactive visualization modules for biologists to analyze the transcriptome and TCR/BCR features at the single-cell level. HuARdb is freely available at https://huarc.net/database with functions for data querying, browsing, downloading, and depositing. In conclusion, huARdb is a comprehensive and multi-perspective atlas for human antigen receptors.


Assuntos
Bases de Dados Genéticas , Receptores de Antígenos de Linfócitos B/classificação , Receptores de Antígenos de Linfócitos T/classificação , Software , Linfócitos B , Humanos , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Transcriptoma/genética , Recombinação V(D)J/genética
3.
J Autoimmun ; 136: 103028, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37001432

RESUMO

Follicular helper T (Tfh) cells are important for generating humoral immune responses by helping B cells form germinal centers (GCs) and the production of high-affinity antibodies. However, aberrant Tfh cell expansion also contributes to the generation of self-reactive autoantibodies and promotes autoantibody-mediated autoimmune diseases such as systemic lupus erythematosus (SLE). Protein phosphatase 2A catalytic subunit alpha isoform (PP2A Cα) expression levels are elevated in peripheral T cells of SLE patients and positively correlate with autoantibody titers and disease activity. Here, we demonstrate a critical role of PP2A in Tfh differentiation by using T cell restricted PP2A Cα deficient mice. We observed impaired Tfh differentiation and GC response in two different classical Tfh induction models. Mechanistic studies revealed that downregulation of protein translation of the Tfh lineage transcription factor BCL6 in PP2A deficient T cells. Importantly, we found that PP2A deficiency by either gene knockout or chemical inhibition alleviated lupus severity in mice. Lastly, we confirmed a positive correlation between PP2A Cα and BCL6 protein levels in human CD4+ T cells from patients with SLE. In summary, our study revealed a critical role of PP2A in regulating Tfh cells and suggests it is a potential therapeutic target for lupus.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T Auxiliares-Indutores , Humanos , Camundongos , Animais , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Autoanticorpos , Linfócitos B , Diferenciação Celular
4.
Rheumatology (Oxford) ; 62(1): 373-383, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35412608

RESUMO

OBJECTIVES: This study aimed to investigate the high-resolution CT (HRCT) characteristics of anti-melanoma differentiation-associated gene 5 (MDA5) antibody positive dermatomyositis-associated interstitial lung disease (anti-MDA5 DM-ILD), and to clarify the underlying mechanisms of the clinical phenomenon. METHODS: Clinical data and HRCT patterns were compared between anti-MDA5 DM-ILD (n = 32) and antisynthetase syndrome-associated ILD (ASS-ILD) (n = 29). RNA sequencing of whole-blood samples from the two groups, and in vitro experiments using human embryonic lung fibroblasts (HELFs) were conducted to explore the potential mechanisms of the clinical findings. RESULTS: The anti-MDA5 DM-ILD subset had a significantly higher incidence of rapidly progressive ILD (RPILD) than ASS-ILD (65.6% vs 37.9%; P = 0.031). The relative percentage of the lung fibrosis HRCT pattern was significantly lower in the anti-MDA5 DM-ILD group, especially the RPILD subgroup (P = 0.013 and 0.003, respectively). RNA sequencing detected the upregulated genes including interferon-induced helicase C domain 1 (encoding MDA5), and a trend towards downregulated expression of TGF-ß signalling components in anti-MDA5 DM-ILD. In vitro culture of HELFs revealed that upregulated expression of MDA5 in HELFs was correlated with the downregulated expression of alpha smooth muscle actin, connective tissue growth factor, collagen I and collagen III by suppressing the TGF-ß signalling pathway. CONCLUSIONS: Anti-MDA5 DM-ILD patients have significantly less lung fibrosis and elevated MDA5 expression. The upregulated expression of MDA5 has relations with the suppression of the pro-fibrotic function of fibroblasts via the TGF-ß signalling pathway, which may partially explain the mechanism of the clinical phenomenon.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Autoanticorpos , Progressão da Doença , Helicase IFIH1 Induzida por Interferon/genética , Prognóstico , Fibrose Pulmonar/complicações , Estudos Retrospectivos
5.
Proc Natl Acad Sci U S A ; 116(3): 982-987, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593560

RESUMO

Phosphatase PP2A expression levels are positively correlated to the clinical severity of systemic lupus erythematosus (SLE) and IL17A cytokine overproduction, indicating a potential role of PP2A in controlling TH17 differentiation and inflammation. By generating a mouse strain with ablation of the catalytic subunit α of PP2A in peripheral mature T cells (PP2A cKO), we demonstrate that the PP2A complex is essential for TH17 differentiation. These PP2A cKO mice had reduced TH17 cell numbers and less severe disease in an experimental autoimmune encephalomyelitis (EAE) model. PP2A deficiency also ablated C-terminal phosphorylation of SMAD2 but increased C-terminal phosphorylation of SMAD3. By regulating the activity of RORγt via binding, the changes in the phosphorylation status of these R-SMADs reduced Il17a gene transcription. Finally, PP2A inhibitors showed similar effects on TH17 cells as were observed in PP2A cKO mice, i.e., decreased TH17 differentiation and relative protection of mice from EAE. Taken together, these data demonstrate that phosphatase PP2A is essential for TH17 differentiation and that inhibition of PP2A could be a possible therapeutic approach to controlling TH17-driven autoimmune diseases.


Assuntos
Diferenciação Celular , Encefalomielite Autoimune Experimental , Proteína Fosfatase 2 , Células Th17/imunologia , Transcrição Gênica/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/imunologia , Proteína Smad2/genética , Proteína Smad2/imunologia , Células Th17/patologia
6.
Proc Natl Acad Sci U S A ; 116(25): 12422-12427, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31152132

RESUMO

The development of thymocytes to mature T cells in the thymus is tightly controlled by cellular selection, in which only a small fraction of thymocytes equipped with proper quality of TCRs progress to maturation. It is pivotal to protect the survival of the few T cells, which pass the selection. However, the signaling events, which safeguard the cell survival in thymus, are not totally understood. In this study, protein Ser/Thr phosphorylation in thymocytes undergoing positive selection is profiled by mass spectrometry. The results revealed large numbers of dephosphorylation changes upon T cell receptor (TCR) activation during positive selection. Subsequent substrate analysis pinpointed protein phosphatase 2A (PP2A) as the enzyme responsible for the dephosphorylation changes in developing thymocytes. PP2A catalytic subunit α (Ppp2ca) deletion in the T cell lineage in Ppp2caflox/flox-Lck-Cre mice (PP2A cKO) displayed dysregulated dephosphorylation of apoptosis-related proteins in double-positive (DP) cells and caused substantially decreased numbers of DP CD4+ CD8+ cells. Increased levels of apoptosis in PP2A cKO DP cells were found to underlie aberrant thymocyte development. Finally, the defective thymocyte development in PP2A cKO mice could be rescued by either Bcl2 transgene expression or by p53 knockout. In summary, our work reveals an essential role of PP2A in promoting thymocyte development through the regulation of cell survival.


Assuntos
Sobrevivência Celular , Proteína Fosfatase 2/metabolismo , Timócitos/citologia , Animais , Apoptose , Proliferação de Células , Genes p53 , Camundongos , Camundongos Knockout , Fosforilação , Proteína Fosfatase 2/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Timócitos/enzimologia
7.
Front Physiol ; 13: 839859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283766

RESUMO

Hair graying is an interesting physiological alteration associated with aging and certain diseases. The occurrence is due to depigmentation of the hair caused by depletion and dysfunction of melanocyte stem cells (MeSCs). However, what causes the depletion and dysfunction of MeSCs remains unclear. MeSCs reside in the hair follicle bulge which provides the appropriate niche for the homeostasis of various stem cells within hair follicle including MeSCs. In addition to local signaling from the cells composed of hair follicle, emerging evidences have shown that nerves, adipocytes and immune cells outside of hair follicle per se also play important roles in the regulation of MeSCs. Here, we review the recent studies on different cells in the MeSCs microenvironment beyond the hair follicle per se, discuss their function in regulating hair graying and potentially novel treatments of hair graying.

8.
Clin Rheumatol ; 40(3): 1147-1157, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32676918

RESUMO

The JAK family (JAK1, JAK2, JAK3, and TYK2) have recently emerged as a potential therapeutic management in controlling severe and refractory dermatomyositis. Meanwhile, the progress in the discovery of JAK blockers is significant, with an increasing number of selective JAK inhibitors reported and some are in or prepare for clinical trials. However, the importance of each JAK in dermatomyositis is unclear, which is critical for a comprehensive understanding of dermatomyositis and significant for forming mechanism-based strategy. Here, we presented a case with clinically amyopathic dermatomyositis and essential thrombocytosis with a somatic constitutive active mutation of JAK2(V617F). The coexistence of these two uncommon diseases attracted us to investigate their underlying relationship. To this end, we characterized the clinical course and laboratory findings of this patient. Particularly, we correlated JAK2(V617F) mutation burden in affected peripheral blood subset with clinical activity score of dermatomyositis. Based on our observation, we concluded that these two diseases are independent disorders, and JAK2(V617F) mutation burden is irrelevant to the severity of dermatomyositis. Finally, we reviewed the literature and summarized them with a thorough discussion.


Assuntos
Dermatomiosite , Transtornos Mieloproliferativos , Dermatomiosite/complicações , Dermatomiosite/genética , Humanos , Janus Quinase 2/genética , Janus Quinases , Mutação
9.
Cell Mol Immunol ; 18(8): 1896-1903, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472023

RESUMO

Dysregulated B-cell activation plays pivotal roles in systemic lupus erythematosus (SLE), which makes B-cell depletion a potential strategy for SLE treatment. The clinical success of anti-CD19 CAR-T cells in treating B-cell malignancies has attracted the attention of researchers. In this study, we aimed to investigate the feasibility of applying anti-CD19 CAR-T cell therapy to SLE treatment in a mouse disease model. We constructed murine anti-CD19 CARs with either CD28 or 4-1BB as the intracellular costimulatory motif and evaluated the therapeutic function of the corresponding CAR-T cells by infusing them into MRL-lpr mice. Furthermore, anti-CD19 CAR-T cells were transferred to MRL-lpr mice before the onset of disease to determine their role in SLE prevention. According to our observations, compared with antibody treatment, the adoptive transfer of our anti-CD19 CAR-T cells showed a more sustained B-cell-depletion effect in MRL-lpr mice. The transfer of syngeneic anti-CD19 CAR-T cells not only prevented disease pathogenesis before the onset of disease symptoms but also displayed therapeutic benefits at a later stage after disease progression. We also tried to optimize the treatment strategy and found that compared with CAR-T cells with the CD28 costimulatory motif, CAR-T cells with the 4-1BB costimulatory motif showed better therapeutic efficiency without cell enrichment. Taken together, these results show that anti-CD19 CAR-T cell therapy was effective in the prevention and treatment of a murine model of SLE, indicating its potential for clinical use in patients.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T , Animais , Antígenos CD19 , Modelos Animais de Doenças , Humanos , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/terapia , Camundongos , Camundongos Endogâmicos MRL lpr
10.
Cell Mol Immunol ; 18(10): 2372-2382, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480147

RESUMO

The nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome is essential in inflammation and inflammatory disorders. Phosphorylation at various sites on NLRP3 differentially regulates inflammasome activation. The Ser725 phosphorylation site on NLRP3 is depicted in multiple inflammasome activation scenarios, but the importance and regulation of this site has not been clarified. The present study revealed that the phosphorylation of Ser725 was an essential step for the priming of the NLRP3 inflammasome in macrophages. We also showed that Ser725 was directly phosphorylated by misshapen (Msn)/NIK-related kinase 1 (MINK1), depending on the direct interaction between MINK1 and the NLRP3 LRR domain. MINK1 deficiency reduced NLRP3 activation and suppressed inflammatory responses in mouse models of acute sepsis and peritonitis. Reactive oxygen species (ROS) upregulated the kinase activity of MINK1 and subsequently promoted inflammasome priming via NLRP3 Ser725 phosphorylation. Eliminating ROS suppressed NLRP3 activation and reduced sepsis and peritonitis symptoms in a MINK1-dependent manner. Altogether, our study reveals a direct regulation of the NLRP3 inflammasome by Msn family kinase MINK1 and suggests that modulation of MINK1 activity is a potential intervention strategy for inflammasome-related diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Inflamação , Macrófagos , Camundongos , Espécies Reativas de Oxigênio
11.
Oncotarget ; 8(33): 53935-53947, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903313

RESUMO

Listeria monocytogenes (L. monocytogenes), which is a facultative intracellular bacterial pathogen that causes listeriosis, is widely used to study the mammalian immune response to infection. After phagocytosis by professional phagocytes, L. monocytogenes is initially contained within phagosomes, which mature into phagolysosomes, where the bacteria are degraded. Although phagocytosis and subsequent phagosome maturation is essential for the clearance of infectious microbial pathogens, the underlying regulatory mechanisms are still unclear. SNX10 (Sorting nexin 10) has the simplest structure of the SNX family and has been reported to regulate endosomal morphology, which might be crucial for macrophage function, including phagocytosis and digestion of pathogens, inflammatory response, and antigen presentation. Our results showed that SNX10 expression was upregulated following L. monocytogenes infection in macrophages. It was also revealed that SNX10 promoted phagosome maturation by recruiting the Mon1-Ccz1 complex to endosomes and phagosomes. As a result, SNX10 deficiency decreased the bacterial killing ability of macrophages, and SNX10-deficient mice showed increased susceptibility to L. monocytogenes infection in vivo. Thus, this study revealed an essential role of SNX10 in controlling bacterial infection.

12.
J Exp Med ; 214(5): 1453-1469, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28400474

RESUMO

T helper type 17 cells (Th17 cells) are major contributors to many autoimmune diseases. In this study, we demonstrate that the germinal center kinase family member MINK1 (misshapen/NIK-related kinase 1) negatively regulates Th17 cell differentiation. The suppressive effect of MINK1 on induction of Th17 cells is mediated by the inhibition of SMAD2 activation through direct phosphorylation of SMAD2 at the T324 residue. The importance of MINK1 to Th17 cell differentiation was strengthened in the animal model of experimental autoimmune encephalomyelitis (EAE). Moreover, we show that the reactive oxygen species (ROS) scavenger N-acetyl cysteine boosts Th17 cell differentiation in a MINK1-dependent manner and exacerbates the severity of EAE. Thus, we have not only established MINK1 as a critical regulator of Th17 cell differentiation, but also clarified that accumulation of ROS may limit the generation of Th17 cells. The contribution of MINK1 to ROS-regulated Th17 cell differentiation may suggest an important mechanism for the development of autoimmune diseases influenced by antioxidant dietary supplements.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Células Th17/fisiologia , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA