Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
País de afiliação
Intervalo de ano de publicação
1.
Dev Cell ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39029469

RESUMO

The intermitochondrial cement (IMC) is a prominent germ granule that locates among clustered mitochondria in mammalian germ cells. Serving as a key platform for Piwi-interacting RNA (piRNA) biogenesis; however, how the IMC assembles among mitochondria remains elusive. Here, we identify that Tudor domain-containing 1 (TDRD1) triggers IMC assembly via phase separation. TDRD1 phase separation is driven by the cooperation of its tetramerized coiled-coil domain and dimethylarginine-binding Tudor domains but is independent of its intrinsically disordered region. TDRD1 is recruited to mitochondria by MILI and sequentially enhances mitochondrial clustering and triggers IMC assembly via phase separation to promote piRNA processing. TDRD1 phase separation deficiency in mice disrupts IMC assembly and piRNA biogenesis, leading to transposon de-repression and spermatogenic arrest. Moreover, TDRD1 phase separation is conserved in vertebrates but not in invertebrates. Collectively, our findings demonstrate a role of phase separation in germ granule formation and establish a link between membrane-bound organelles and membrane-less organelles.

2.
Nat Commun ; 15(1): 2343, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491008

RESUMO

The intermitochondrial cement (IMC) and chromatoid body (CB) are posited as central sites for piRNA activity in mice, with MIWI initially assembling in the IMC for piRNA processing before translocating to the CB for functional deployment. The regulatory mechanism underpinning MIWI translocation, however, has remained elusive. We unveil that piRNA loading is the trigger for MIWI translocation from the IMC to CB. Mechanistically, piRNA loading facilitates MIWI release from the IMC by weakening its ties with the mitochondria-anchored TDRKH. This, in turn, enables arginine methylation of MIWI, augmenting its binding affinity for TDRD6 and ensuring its integration within the CB. Notably, loss of piRNA-loading ability causes MIWI entrapment in the IMC and its destabilization in male germ cells, leading to defective spermatogenesis and male infertility in mice. Collectively, our findings establish the critical role of piRNA loading in MIWI translocation during spermatogenesis, offering new insights into piRNA biology in mammals.


Assuntos
Proteínas Argonautas , Grânulos de Ribonucleoproteínas de Células Germinativas , RNA de Interação com Piwi , Animais , Masculino , Camundongos , Proteínas Argonautas/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mitocôndrias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética , Testículo/metabolismo
3.
Biol. Res ; 51: 6, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888431

RESUMO

Abstract Background Cocaine-and amphetamine regulated transcript (CART) is an endogenous neuropeptide, which is widespread in animals, plays a key role in regulation of follicular atresia in cattle and sheep. Among animal ovaries, CART mRNA was firstly found in the cattle ovaries. CART was localized in the antral follicles oocytes, granulosa and cumulus cells by immunohistochemistry and in situ hybridization. Further research found that secretion of E2 was inhibited in granulosa cells with a certain dose of CART, the effect depends on the stage of cell differentiation, suggesting that CART could play a crucial role in regulating follicle atresia. The objective of this study was to characterize the CART expression model and hormones secretion in vivo and vitro in pig follicle granulosa cells, preliminarily studied whether CART have an effect on granulosa cells proliferation and hormones secretion in multiparous animals such as pigs. Methods The expression levels of CART mRNA in granulosa cells of different follicles were analyzed using qRT-PCR technology. Immunohistochemistry technology was used to localize CART peptide. Granulosa cells were cultured in medium supplemented with different concentrations of CART and FSH for 168 h using Long-term culture system, and observed using a microscope. The concentration of Estradiol (E2) and progesterone (P) in follicular fluids of different test groups were detected by enzyme linked immunosorbent assay (ELISA). Results Results showed that expression level of CART mRNA was highest in medium follicles, and significantly higher than that in large and small follicles (P < 0.05). Immunohistochemical results showed that CART were expressed both in granulosa cells and theca cells of large follicles, while CART were detected only in theca cells of medium and small follicles. After the granulosa cells were cultured for 168 h, and found that concentrations of E2 increase with concentrations of follicle-stimulating hormone (FSH) increase when the CART concentration was 0 μM. And the concentration of FSH reached 25 ng/mL, the concentration of E2 is greatest. It shows that the production of E2 needs induction of FSH in granulosa cells of pig ovarian follicles. With the increasing of CART concentrations (0.01, 0.1, 1 μM), E2 concentration has a declining trend, when the FSH concentrations were 25 and 50 ng/mL in the medium, respectively. Conclusions These results suggested that CART plays a role to inhibit granulosa cells proliferation and E2 production, which induced by FSH in porcine ovarian follicular granulosa cells in vitro, but the inhibition effect is not significant. So we hypothesis CART maybe not a main local negative regulatory factor during porcine follicular development, which is different from the single fetal animals.


Assuntos
Animais , Feminino , Progesterona/metabolismo , Estradiol/metabolismo , Folículo Ovariano/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Suínos , Imuno-Histoquímica , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA