Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(9): 4208-4222, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37070189

RESUMO

RPS3, a universal core component of the 40S ribosomal subunit, interacts with mRNA at the entry channel. Whether RPS3 mRNA-binding contributes to specific mRNA translation and ribosome specialization in mammalian cells is unknown. Here we mutated RPS3 mRNA-contacting residues R116, R146 and K148 and report their impact on cellular and viral translation. R116D weakened cap-proximal initiation and promoted leaky scanning, while R146D had the opposite effect. Additionally, R146D and K148D displayed contrasting effects on start-codon fidelity. Translatome analysis uncovered common differentially translated genes of which the downregulated set bears long 5'UTR and weak AUG context, suggesting a stabilizing role during scanning and AUG selection. We identified an RPS3-dependent regulatory sequence (RPS3RS) in the sub-genomic 5'UTR of SARS-CoV-2 consisting of a CUG initiation codon and a downstream element that is also the viral transcription regulatory sequence (TRS). Furthermore, RPS3 mRNA-binding residues are essential for SARS-CoV-2 NSP1-mediated inhibition of host translation and for its ribosomal binding. Intriguingly, NSP1-induced mRNA degradation was also reduced in R116D cells, indicating that mRNA decay occurs in the ribosome context. Thus, RPS3 mRNA-binding residues have multiple translation regulatory functions and are exploited by SARS-CoV-2 in various ways to influence host and viral mRNA translation and stability.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Proteínas Ribossômicas , Humanos , Regiões 5' não Traduzidas , Códon de Iniciação/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452203

RESUMO

Algal blooms drive global biogeochemical cycles of key nutrients and serve as hotspots for biological interactions in the ocean. The massive blooms of the cosmopolitan coccolithophore Emiliania huxleyi are often infected by the lytic E. huxleyi virus, which is a major mortality agent triggering bloom demise. This multi-annual "boom and bust" pattern of E. huxleyi blooms suggests that coexistence is essential for these host-virus dynamics. To investigate host-virus coexistence, we developed a new model system from an E. huxleyi culture that recovered from viral infection. The recovered population coexists with the virus, as host cells continue to divide in parallel to viral production. By applying single-molecule fluorescence in situ hybridization (smFISH) to quantify the fraction of infected cells, and assessing infection-specific lipid biomarkers, we identified a small subpopulation of cells that were infected and produced new virions, whereas most of the host population could resist infection. To further assess population heterogeneity, we generated clonal strain collections using single-cell sorting and subsequently phenotyped their susceptibility to E. huxleyi virus infection. This unraveled substantial cell-to-cell heterogeneity across a continuum of susceptibility to resistance, highlighting that infection outcome may vary depending on the individual cell. These results add a new dimension to our understanding of the complexity of host-virus interactions that are commonly assessed in bulk and described by binary definitions of resistance or susceptibility. We propose that phenotypic heterogeneity drives the host-virus coexistence and demonstrate how the coexistence with a lytic virus provides an ecological advantage for the host by killing competing strains.


Assuntos
Haptófitas , Viroses , Vírus , Humanos , Hibridização in Situ Fluorescente , Haptófitas/genética , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA