Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(31): 21583-21590, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051486

RESUMO

Crystalline organic semiconductors are known to have improved charge carrier mobility and exciton diffusion length in comparison to their amorphous counterparts. Certain organic molecular thin films can be transitioned from initially prepared amorphous layers to large-scale crystalline films via abrupt thermal annealing. Ideally, these films crystallize as platelets with long-range-ordered domains on the scale of tens to hundreds of microns. However, other organic molecular thin films may instead crystallize as spherulites or resist crystallization entirely. Organic molecules that have the capability of transforming into a platelet morphology feature both high melting point (Tm) and crystallization driving force (ΔGc). In this work, we employed machine learning (ML) to identify candidate organic materials with the potential to crystallize into platelets by estimating the aforementioned thermal properties. Six organic molecules identified by the ML algorithm were experimentally evaluated; three crystallized as platelets, one crystallized as a spherulite, and two resisted thin film crystallization. These results demonstrate a successful application of ML in the scope of predicting thermal properties of organic molecules and reinforce the principles of Tm and ΔGc as metrics that aid in predicting the crystallization behavior of organic thin films.

2.
Nat Commun ; 15(1): 708, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267408

RESUMO

Thermally evaporated C60 is a near-ubiquitous electron transport layer in state-of-the-art p-i-n perovskite-based solar cells. As perovskite photovoltaic technologies are moving toward industrialization, batch-to-batch reproducibility of device performances becomes crucial. Here, we show that commercial as-received (99.75% pure) C60 source materials may coalesce during repeated thermal evaporation processes, jeopardizing such reproducibility. We find that the coalescence is due to oxygen present in the initial source powder and leads to the formation of deep states within the perovskite bandgap, resulting in a systematic decrease in solar cell performance. However, further purification (through sublimation) of the C60 to 99.95% before evaporation is found to hinder coalescence, with the associated solar cell performances being fully reproducible after repeated processing. We verify the universality of this behavior on perovskite/silicon tandem solar cells by demonstrating their open-circuit voltages and fill factors to remain at 1950 mV and 81% respectively, over eight repeated processes using the same sublimed C60 source material. Notably, one of these cells achieved a certified power conversion efficiency of 30.9%. These findings provide insights crucial for the advancement of perovskite photovoltaic technologies towards scaled production with high process yield.

3.
Mater Horiz ; 9(11): 2752-2761, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36069252

RESUMO

Exploiting the capabilities of organic semiconductors for applications ranging from light-emitting diodes to photovoltaics to lasers relies on the creation of ordered, smooth layers for optimal charge carrier mobilities and exciton diffusion. This, in turn, creates a demand for organic small molecules that can form smooth thin film crystals via homoepitaxy. We have studied a set of small-molecule organic semiconductors that serve as templates for homoepitaxy. The surface roughness of these materials is measured as a function of adlayer film thickness from which the growth exponent (ß) is extracted. Notably, we find that three-dimensional molecules that have low molecular aspect ratios (AR) tend to remain smooth as thickness increases (small ß). This is in contrast to planar or rod-like molecules with high AR that quickly roughen (large ß). Molecular dynamics simulations find that the Ehrlich-Schwöbel barrier (EES) alone is unable to fully explain this trend. We further investigated the mobility of ad-molecules on the crystalline surface to categorize their diffusion behaviors and the effects of aggregation to account for the different degrees of roughness that we observed. Our results suggest that low AR molecules have low molecular mobility and moderate EES which creates a downward funneling effect leading to smooth crystal growth.

4.
Hear Res ; 385: 107845, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760262

RESUMO

The effects of noise-induced hearing loss have yet to be studied for the Dutch-belted strain of rabbits, which is the only strain that has been used in studies of the central auditory system. We measured auditory brainstem responses (ABRs), 2f1-f2 distortion product otoacoustic emissions (DPOAEs), and counts of cochlear inner and outer hair cells (IHCs and OHCs, respectively) from confocal images of Myo7a-stained cochlear whole-mounts in unexposed and noise-overexposed, Dutch-belted, male and female rabbits in order to characterize cochlear function and structure under normal-hearing and hearing-loss conditions. Using an octave-band noise exposure centered at 750 Hz presented under isoflurane anesthesia, we found that a sound level of 133 dB SPL for 60 min was minimally sufficient to produce permanent ABR threshold shifts. Overexposure durations of 60 and 90 min caused median click-evoked ABR threshold shifts of 10 and 50 dB, respectively. Susceptibility to overexposure was highly variable across ears, but less variable across test frequencies within the same ear. ABR and DPOAE threshold shifts were smaller, on average, and more variable in male than female ears. Similarly, post-exposure survival of OHCs was higher, on average, and more variable in male than female ears. We paired post-exposure ABR and DPOAE threshold shift data with hair cell count data measured in the same ear at the same frequency and cochlear frequency location. ABR and DPOAE threshold shifts exhibited critical values of 46 and 18 dB, respectively, below which the majority of OHCs and IHCs survived and above which OHCs were wiped out while IHC survival was variable. Our data may be of use to researchers who wish to use Dutch-belted rabbits as a model for the effects of noise-induced hearing loss on the central auditory system.


Assuntos
Limiar Auditivo , Cóclea/patologia , Cóclea/fisiopatologia , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Animais , Fadiga Auditiva , Contagem de Células , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Emissões Otoacústicas Espontâneas , Coelhos , Fatores Sexuais
5.
J Endocrinol ; 241(3): 189-199, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939450

RESUMO

Poor nutrition plays a fundamental role in the development of insulin resistance, an underlying characteristic of type 2 diabetes. We have previously shown that high-fat diet-induced insulin resistance in rats can be ameliorated by a single glucose meal, but the mechanisms for this observation remain unresolved. To determine if this phenomenon is mediated by gut or hepatoportal factors, male Wistar rats were fed a high-fat diet for 3 weeks before receiving one of five interventions: high-fat meal, glucose gavage, high-glucose meal, systemic glucose infusion or portal glucose infusion. Insulin sensitivity was assessed the following day in conscious animals by a hyperinsulinaemic-euglycaemic clamp. An oral glucose load consistently improved insulin sensitivity in high-fat-fed rats, establishing the reproducibility of this model. A systemic infusion of a glucose load did not affect insulin sensitivity, indicating that the physiological response to oral glucose was not due solely to increased glucose turnover or withdrawal of dietary lipid. A portal infusion of glucose produced the largest improvement in insulin sensitivity, implicating a role for the hepatoportal region rather than the gastrointestinal tract in mediating the effect of glucose to improve lipid-induced insulin resistance. These results further deepen our understanding of the mechanism of glucose-mediated regulation of insulin sensitivity and provide new insight into the role of nutrition in whole body metabolism.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/análise , Dieta Hiperlipídica , Insulina/metabolismo , Fígado/metabolismo , Veia Porta/metabolismo , Ração Animal , Animais , Diabetes Mellitus Tipo 2/metabolismo , Gorduras na Dieta , Modelos Animais de Doenças , Glucose/administração & dosagem , Técnica Clamp de Glucose , Resistência à Insulina , Lipídeos/sangue , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA