Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008373

RESUMO

Epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET) drive tissue reorganization critical for early development. In carcinomas, processing through EMT, MET, or partial states promotes migration, invasion, dormancy, and metastatic colonization. As a reversible process, EMT is inherently regulated at epigenetic and epigenomic levels. To understand the epigenomic nature of reversible EMT and its partial states, we characterized chromatin accessibility dynamics, transcriptomic output, protein expression, and cellular phenotypes during stepwise reversible EMT. We find that the chromatin insulating protein machinery, including CTCF, is suppressed and re-expressed, coincident with broad alterations in chromatin accessibility, during EMT/MET, and is lower in triple-negative breast cancer cell lines with EMT features. Through an analysis of chromatin accessibility using ATAC-seq, we identify that early phases of EMT are characterized by enrichment for AP-1 family member binding motifs, but also by a diminished enrichment for CTCF binding motifs. Through a loss-of-function analysis, we demonstrate that the suppression of CTCF alters cellular plasticity, strengthening the epithelial phenotype via the upregulation of epithelial markers E-cadherin/CDH1 and downregulation of N-cadherin/CDH2. Conversely, the upregulation of CTCF leads to the upregulation of EMT gene expression and an increase in mesenchymal traits. These findings are indicative of a role of CTCF in regulating epithelial-mesenchymal plasticity and gene expression.

2.
Noncoding RNA ; 7(3)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449670

RESUMO

Triple-negative breast cancers affect thousands of women in the United States and disproportionately drive mortality from breast cancer. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression post-transcriptionally by inhibiting target mRNA translation or by promoting mRNA degradation. We have identified that miRNA-203, silenced by epithelial-mesenchymal transition (EMT), is a tumor suppressor and can promote differentiation of breast cancer stem cells. In this study, we tested the ability of liposomal delivery of miR-203 to reverse aspects of breast cancer pathogenesis using breast cancer and EMT cell lines. We show that translationally relevant methods for increasing miR-203 abundance within a target tissue affects cellular properties associated with cancer progression. While stable miR-203 expression suppresses LASP1 and survivin, nanoliposomal delivery suppresses BMI1, indicating that suppression of distinct mRNA target profiles can lead to loss of cancer cell migration.

3.
Oncotarget ; 8(39): 65548-65565, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029452

RESUMO

The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA