Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell Proteomics ; 22(2): 100485, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549590

RESUMO

The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery-suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these-the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex-as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Proteoma/metabolismo , Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Antineoplásicos/farmacologia , Espectrometria de Massas , Cromatografia em Gel
2.
Anal Chem ; 94(29): 10320-10328, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35848328

RESUMO

Complete, reproducible extraction of protein material is essential for comprehensive and unbiased proteome analyses. A current gold standard is single-pot, solid-phase-enhanced sample preparation (SP3), in which organic solvent and magnetic beads are used to denature and capture protein aggregates, with subsequent washes removing contaminants. However, SP3 is dependent on effective protein immobilization onto beads, risks losses during wash steps, and exhibits losses and greater costs at higher protein inputs. Here, we propose solvent precipitation SP3 (SP4) as an alternative to SP3 protein cleanup, capturing acetonitrile-induced protein aggregates by brief centrifugation rather than magnetism─with optional low-cost inert glass beads to simplify handling. SP4 recovered equivalent or greater protein yields for 1-5000 µg preparations and improved reproducibility (median protein R2 0.99 (SP4) vs 0.97 (SP3)). Deep proteome profiling revealed that SP4 yielded a greater recovery of low-solubility and transmembrane proteins than SP3, benefits to aggregating protein using 80 vs 50% organic solvent, and equivalent recovery by SP4 and S-Trap. SP4 was verified in three other labs across eight sample types and five lysis buffers─all confirming equivalent or improved proteome characterization vs SP3. With near-identical recovery, this work further illustrates protein precipitation as the primary mechanism of SP3 protein cleanup and identifies that magnetic capture risks losses, especially at higher protein concentrations and among more hydrophobic proteins. SP4 offers a minimalistic approach to protein cleanup that provides cost-effective input scalability, the option to omit beads entirely, and suggests important considerations for SP3 applications─all while retaining the speed and compatibility of SP3.


Assuntos
Proteoma , Proteômica , Fenômenos Magnéticos , Agregados Proteicos , Proteoma/análise , Reprodutibilidade dos Testes , Solventes
3.
Basic Res Cardiol ; 115(3): 26, 2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146560

RESUMO

Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myocardial infarction which may be mediated by secreted small extracellular vesicles (sEVs). However, MSCs have frequently been harvested from aged or diseased patients, while the isolated sEVs often contain high levels of impurities. Here, we studied the cardioprotective and proangiogenic activities of size-exclusion chromatography-purified sEVs secreted from human foetal amniotic fluid stem cells (SS-hAFSCs), possessing superior functional potential to that of adult MSCs. We demonstrated for the first time that highly pure (up to 1.7 × 1010 particles/µg protein) and thoroughly characterised SS-hAFSC sEVs protect rat hearts from ischaemia-reperfusion injury in vivo when administered intravenously prior to reperfusion (38 ± 9% infarct size reduction, p < 0.05). SS-hAFSC sEVs did not protect isolated primary cardiomyocytes in models of simulated ischaemia-reperfusion injury in vitro, indicative of indirect cardioprotective effects. SS-hAFSC sEVs were not proangiogenic in vitro, although they markedly stimulated endothelial cell migration. Additionally, sEVs were entirely responsible for the promigratory effects of the medium conditioned by SS-hAFSC. Mechanistically, sEV-induced chemotaxis involved phosphatidylinositol 3-kinase (PI3K) signalling, as its pharmacological inhibition in treated endothelial cells reduced migration by 54 ± 7% (p < 0.001). Together, these data indicate that SS-hAFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting.


Assuntos
Líquido Amniótico/citologia , Cardiotônicos/metabolismo , Movimento Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Quimiotaxia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Ratos , Traumatismo por Reperfusão/patologia
4.
Mol Cell Proteomics ; 17(4): 776-791, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367434

RESUMO

Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell cancer exhibiting a wide spectrum of disease courses and treatment responses. Molecular characterization of RNA and DNA from CLL cases has led to the identification of important driver mutations and disease subtypes, but the precise mechanisms of disease progression remain elusive. To further our understanding of CLL biology we performed isobaric labeling and mass spectrometry proteomics on 14 CLL samples, comparing them with B-cells from healthy donors (HDB). Of 8694 identified proteins, ∼6000 were relatively quantitated between all samples (q<0.01). A clear CLL signature, independent of subtype, of 544 significantly overexpressed proteins relative to HDB was identified, highlighting established hallmarks of CLL (e.g. CD5, BCL2, ROR1 and CD23 overexpression). Previously unrecognized surface markers demonstrated overexpression (e.g. CKAP4, PIGR, TMCC3 and CD75) and three of these (LAX1, CLEC17A and ATP2B4) were implicated in B-cell receptor signaling, which plays an important role in CLL pathogenesis. Several other proteins (e.g. Wee1, HMOX1/2, HDAC7 and INPP5F) were identified with significant overexpression that also represent potential targets. Western blotting confirmed overexpression of a selection of these proteins in an independent cohort. mRNA processing machinery were broadly upregulated across the CLL samples. Spliceosome components demonstrated consistent overexpression (p = 1.3 × 10-21) suggesting dysregulation in CLL, independent of SF3B1 mutations. This study highlights the potential of proteomics in the identification of putative CLL therapeutic targets and reveals a subtype-independent protein expression signature in CLL.


Assuntos
Linfócitos B/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Humanos , Proteômica , Spliceossomos
5.
Mol Cell Proteomics ; 16(3): 386-406, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28062796

RESUMO

Approximately 800,000 leukemia and lymphoma cases are diagnosed worldwide each year. Burkitt's lymphoma (BL) and chronic lymphocytic leukemia (CLL) are examples of contrasting B-cell cancers; BL is a highly aggressive lymphoid tumor, frequently affecting children, whereas CLL typically presents as an indolent, slow-progressing leukemia affecting the elderly. The B-cell-specific overexpression of the myc and TCL1 oncogenes in mice induce spontaneous malignancies modeling BL and CLL, respectively. Quantitative mass spectrometry proteomics and isobaric labeling were employed to examine the biology underpinning contrasting Eµ-myc and Eµ-TCL1 B-cell tumors. Additionally, the plasma proteome was evaluated using subproteome enrichment to interrogate biomarker emergence and the systemic effects of tumor burden. Over 10,000 proteins were identified (q<0.01) of which 8270 cellular and 2095 plasma proteins were quantitatively profiled. A common B-cell tumor signature of 695 overexpressed proteins highlighted ribosome biogenesis, cell-cycle promotion and chromosome segregation. Eµ-myc tumors overexpressed several methylating enzymes and underexpressed many cytoskeletal components. Eµ-TCL1 tumors specifically overexpressed ER stress response proteins and signaling components in addition to both subunits of the interleukin-5 (IL5) receptor. IL5 treatment promoted Eµ-TCL1 tumor proliferation, suggesting an amplification of IL5-induced AKT signaling by TCL1. Tumor plasma contained a substantial tumor lysis signature, most prominent in Eµ-myc plasma, whereas Eµ-TCL1 plasma contained signatures of immune-response, inflammation and microenvironment interactions, with putative biomarkers in early-stage cancer. These findings provide a detailed characterization of contrasting B-cell tumor models, identifying common and specific tumor mechanisms. Integrated plasma proteomics allowed the dissection of a systemic response and a tumor lysis signature present in early- and late-stage cancers, respectively. Overall, this study suggests common B-cell cancer signatures exist and illustrates the potential of the further evaluation of B-cell cancer subtypes by integrative proteomics.


Assuntos
Biomarcadores Tumorais/análise , Linfoma de Burkitt/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/genética , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Linfoma de Burkitt/genética , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Espectrometria de Massas/métodos , Camundongos , Camundongos Transgênicos
6.
Mol Cell Proteomics ; 15(10): 3170-3189, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27512079

RESUMO

Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. In the former, myocardial growth is a risk factor for cardiac failure and faster protein synthesis is a major factor driving cardiomyocyte growth. Our goal was to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are caused by alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other nondividing primary cells. To study the rates of accumulation of specific proteins in these cells, we developed an optimized version of the Quantitative Noncanonical Amino acid Tagging LC/MS proteomic method to label and selectively enrich newly synthesized proteins in these primary cells while eliminating the suppressive effects of pre-existing and highly abundant nonisotope-tagged polypeptides. Our data revealed that a classical pathologic (phenylephrine; PE) and the recently identified insulin stimulus that also contributes to the development of pathological cardiac hypertrophy (insulin), both increased the synthesis of proteins involved in, e.g. glycolysis, the Krebs cycle and beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was up-regulated by signaling through mammalian target of rapamycin complex 1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was up-regulated in rat hearts following TAC. This isoform possesses specific regulatory properties, so this finding indicates it may be involved in metabolic remodeling and also serve as a novel candidate biomarker. Levels of translation factor eEF1 also increased during TAC, likely contributing to faster cell mass accumulation. Interestingly those two candidates were not up-regulated in pregnancy or exercise induced CH, indicating PKM2 and eEF1 were pathological CH specific markers. We anticipate that the methodologies described here will be valuable for other researchers studying protein synthesis in primary cells.


Assuntos
Insulina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/farmacologia , Proteoma/efeitos dos fármacos , Proteômica/métodos , Animais , Células Cultivadas , Cromatografia Líquida , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Espectrometria de Massas , Miócitos Cardíacos/metabolismo , Proteoma/genética , Ratos , Ratos Sprague-Dawley
7.
J Neurosci ; 35(3): 972-84, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609615

RESUMO

Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m(7)GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Córtex Cerebral/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
8.
J Proteome Res ; 13(11): 5094-105, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25072778

RESUMO

Linking gender-specific differences to the molecular etiology of obesity has been largely based on genomic and transcriptomic evidence lacking endophenotypic insight and is not applicable to the extracellular fluid compartments, or the milieu intérieur, of the human body. To address this need, this study profiled the whole serum proteomes of age-matched nondiabetic overweight and obese females (n = 28) and males (n = 31) using a multiplex design with pooled biological and technical replicates. To bypass basic limitations of immunodepletion-based strategies, subproteome enrichment by size-exclusion chromatography (SuPrE-SEC) followed by iTRAQ 2D-LC-nESI-FTMS analysis was used. The study resulted in the reproducible analysis of 2472 proteins (peptide FDR < 5%, q < 0.05). A total of 248 proteins exhibited significant modulation between men and women (p < 0.05) that mapped to pathways associated with ß-estradiol, lipid and prostanoid metabolism, vitamin D function, immunity/inflammation, and the complement and coagulation cascades. This novel endophenotypic signature of gender-specific differences in whole serum confirmed and expanded the results of previous physiologic and pharmacologic studies exploring sexual dimorphism at the genomic and transcriptomic level in tissues and cells. Conclusively, the multifactorial and pleiotropic nature of human obesity exhibits sexual dimorphism in the circulating proteome of importance to clinical study design.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromatografia em Gel/métodos , Obesidade/sangue , Sobrepeso/sangue , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Adulto , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Sobrepeso/metabolismo , Mapas de Interação de Proteínas , Caracteres Sexuais , Fatores Sexuais , Transcriptoma
9.
Artigo em Inglês | MEDLINE | ID: mdl-39279720

RESUMO

Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.

10.
Commun Med (Lond) ; 3(1): 10, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670203

RESUMO

BACKGROUND: Earlier detection of pancreatic ductal adenocarcinoma (PDAC) is key to improving patient outcomes, as it is mostly detected at advanced stages which are associated with poor survival. Developing non-invasive blood tests for early detection would be an important breakthrough. METHODS: The primary objective of the work presented here is to use a dataset that is prospectively collected, to quantify a set of cancer-associated proteins and construct multi-marker models with the capacity to predict PDAC years before diagnosis. The data used is part of a nested case-control study within the UK Collaborative Trial of Ovarian Cancer Screening and is comprised of 218 samples, collected from a total of 143 post-menopausal women who were diagnosed with pancreatic cancer within 70 months after sample collection, and 249 matched non-cancer controls. We develop a stacked ensemble modelling technique to achieve robustness in predictions and, therefore, improve performance in newly collected datasets. RESULTS: Here we show that with ensemble learning we can predict PDAC status with an AUC of 0.91 (95% CI 0.75-1.0), sensitivity of 92% (95% CI 0.54-1.0) at 90% specificity, up to 1 year prior to diagnosis, and at an AUC of 0.85 (95% CI 0.74-0.93) up to 2 years prior to diagnosis (sensitivity of 61%, 95% CI 0.17-0.83, at 90% specificity). CONCLUSIONS: The ensemble modelling strategy explored here outperforms considerably biomarker combinations cited in the literature. Further developments in the selection of classifiers balancing performance and heterogeneity should further enhance the predictive capacity of the method.


Pancreatic cancers are most frequently detected at an advanced stage. This limits treatment options and contributes to the dismal survival rates currently recorded. The development of new tests that could improve detection of early-stage disease is fundamental to improve outcomes. Here, we use advanced data analysis techniques to devise an early detection test for pancreatic cancer. We use data on markers in the blood from people enrolled on a screening trial. Our test correctly identifies as positive for pancreatic cancer 91% of the time up to 1 year prior to diagnosis, and 78% of the time up to 2 years prior to diagnosis. These results surpass previously reported tests and should encourage further evaluation of the test in different populations, to see whether it should be adopted in the clinic.

11.
FEBS J ; 288(15): 4464-4487, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33135311

RESUMO

Protein misfolding is a major driver of ageing-associated frailty and disease pathology. Although all cells possess multiple, well-characterised protein quality control systems to mitigate the toxicity of misfolded proteins, how they are integrated to maintain protein homeostasis ('proteostasis') in health-and how their disintegration contributes to disease-is still an exciting and fast-paced area of research. Under physiological conditions, the predominant route for misfolded protein clearance involves ubiquitylation and proteasome-mediated degradation. When the capacity of this route is overwhelmed-as happens during conditions of acute environmental stress, or chronic ageing-related decline-alternative routes for protein quality control are activated. In this review, we summarise our current understanding of how proteasome-targeted misfolded proteins are retrafficked to alternative protein quality control routes such as juxta-nuclear sequestration and selective autophagy when the ubiquitin-proteasome system is compromised. We also discuss the molecular determinants of these alternative protein quality control systems, attempt to clarify distinctions between various cytoplasmic spatial quality control inclusion bodies (e.g., Q-bodies, p62 bodies, JUNQ, aggresomes, and aggresome-like induced structures 'ALIS'), and speculate on emerging concepts in the field that we hope will spur future research-with the potential to benefit the rational development of healthy ageing strategies.


Assuntos
Proteostase , Resposta a Proteínas não Dobradas , Animais , Autofagossomos/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
12.
Nat Commun ; 12(1): 5395, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518531

RESUMO

Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.


Assuntos
Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Instabilidade Genômica , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteína Supressora de Tumor p53/genética
13.
Oncotarget ; 7(5): 6159-74, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26716418

RESUMO

Collagen structure has been shown to influence tumor cell invasion, metastasis and clinical outcome in breast cancer. However, it remains unclear how it affects other solid cancers. Here we utilized multi-photon laser scanning microscopy and Second Harmonic Generation to identify alterations to collagen fiber structure within the tumor stroma of head & neck, esophageal and colorectal cancers. Image segmentation algorithms were then applied to quantitatively characterize these morphological changes, showing that elongated collagen fibers significantly correlated with poor clinical outcome (Log Rank p < 0.05). We used TGF-ß treatment to model fibroblast conversion to smooth muscle actin SMA-positive cancer associated fibroblasts (CAFs) and found that these cells induce the formation of elongated collagen fibers in vivo. However, proteomic/transcriptomic analysis of SMA-positive CAFs cultured ex-vivo showed significant heterogeneity in the expression of genes with collagen fibril organizing gene ontology. Notably, stratifying patients according to stromal SMA-positivity and collagen fiber elongation was found to provide a highly significant correlation with poor survival in all 3 cancer types (Log Rank p ≤ 0.003). In summary, we show that increased collagen fiber length correlates with poor patient survival in multiple tumor types and that only a sub-set of SMA-positive CAFs can mediate the formation of this collagen structure.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Neoplasias/metabolismo , Humanos , Neoplasias/patologia , Prognóstico , Taxa de Sobrevida , Microambiente Tumoral
14.
Antiviral Res ; 123: 78-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26343910

RESUMO

Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1µM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression.


Assuntos
Perfilação da Expressão Gênica , HIV/fisiologia , Ácidos Hidroxâmicos/metabolismo , Proteoma/análise , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Cromatografia Líquida , Humanos , Análise em Microsséries , Espectrometria de Massas em Tandem , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA