Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2316733121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215181

RESUMO

The epithelial-mesenchymal transition (EMT) program is crucial for transforming carcinoma cells into a partially mesenchymal state, enhancing their chemoresistance, migration, and metastasis. This shift in cell state is tightly regulated by cellular mechanisms that are not yet fully characterized. One intriguing EMT aspect is the rewiring of the proteoglycan landscape, particularly the induction of heparan sulfate proteoglycan (HSPG) biosynthesis. This proteoglycan functions as a co-receptor that accelerates cancer-associated signaling pathways through its negatively-charged residues. However, the precise mechanisms through which EMT governs HSPG biosynthesis and its role in cancer cell plasticity remain elusive. Here, we identified exostosin glycosyltransferase 1 (EXT1), a central enzyme in HSPG biosynthesis, to be selectively upregulated in aggressive tumor subtypes and cancer cell lines, and to function as a key player in breast cancer aggressiveness. Notably, ectopic expression of EXT1 in epithelial cells is sufficient to induce HSPG levels and the expression of known mesenchymal markers, subsequently enhancing EMT features, including cell migration, invasion, and tumor formation. Additionally, EXT1 loss in MDA-MB-231 cells inhibits their aggressiveness-associated traits such as migration, chemoresistance, tumor formation, and metastasis. Our findings reveal that EXT1, through its role in HSPG biosynthesis, governs signal transducer and activator of transcription 3 (STAT3) signaling, a known regulator of cancer cell aggressiveness. Collectively, we present the EXT1/HSPG/STAT3 axis as a central regulator of cancer cell plasticity that directly links proteoglycan synthesis to oncogenic signaling pathways.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular
2.
Proc Natl Acad Sci U S A ; 121(32): e2406842121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39093947

RESUMO

Exploring the complexity of the epithelial-to-mesenchymal transition (EMT) unveils a diversity of potential cell fates; however, the exact timing and mechanisms by which early cell states diverge into distinct EMT trajectories remain unclear. Studying these EMT trajectories through single-cell RNA sequencing is challenging due to the necessity of sacrificing cells for each measurement. In this study, we employed optimal-transport analysis to reconstruct the past trajectories of different cell fates during TGF-beta-induced EMT in the MCF10A cell line. Our analysis revealed three distinct trajectories leading to low EMT, partial EMT, and high EMT states. Cells along the partial EMT trajectory showed substantial variations in the EMT signature and exhibited pronounced stemness. Throughout this EMT trajectory, we observed a consistent downregulation of the EED and EZH2 genes. This finding was validated by recent inhibitor screens of EMT regulators and CRISPR screen studies. Moreover, we applied our analysis of early-phase differential gene expression to gene sets associated with stemness and proliferation, pinpointing ITGB4, LAMA3, and LAMB3 as genes differentially expressed in the initial stages of the partial versus high EMT trajectories. We also found that CENPF, CKS1B, and MKI67 showed significant upregulation in the high EMT trajectory. While the first group of genes aligns with findings from previous studies, our work uniquely pinpoints the precise timing of these upregulations. Finally, the identification of the latter group of genes sheds light on potential cell cycle targets for modulating EMT trajectories.


Assuntos
Transição Epitelial-Mesenquimal , Análise de Célula Única , Transição Epitelial-Mesenquimal/genética , Humanos , Análise de Célula Única/métodos , Linhagem da Célula/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética
3.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441500

RESUMO

In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.


Assuntos
Polaridade Celular , Pesquisadores , Animais , Humanos , Biofísica , Diferenciação Celular , Saccharomyces cerevisiae
4.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622400

RESUMO

p53 (also known as TP53) mutation and amyloid formation are long associated with cancer pathogenesis; however, the direct demonstration of the link between p53 amyloid load and cancer progression is lacking. Using multi-disciplinary techniques and 59 tissues (53 oral and stomach cancer tumor tissue samples from Indian individuals with cancer and six non-cancer oral and stomach tissue samples), we showed that p53 amyloid load and cancer grades are highly correlated. Furthermore, next-generation sequencing (NGS) data suggest that not only mutant p53 (e.g. single-nucleotide variants, deletions, and insertions) but wild-type p53 also formed amyloids either in the nucleus (50%) and/or in the cytoplasm in most cancer tissues. Interestingly, in all these cancer tissues, p53 displays a loss of DNA-binding and transcriptional activities, suggesting that the level of amyloid load correlates with the degree of loss and an increase in cancer grades. The p53 amyloids also sequester higher amounts of the related p63 and p73 (also known as TP63 and TP73, respectively) protein in higher-grade tumor tissues. The data suggest p53 misfolding and/or aggregation, and subsequent amyloid formation, lead to loss of the tumor-suppressive function and the gain of oncogenic function, aggravation of which might determine the cancer grade.


Assuntos
Neoplasias Gástricas , Proteína Supressora de Tumor p53 , Humanos , Núcleo Celular , Citoplasma , Mutação/genética , Proteína Supressora de Tumor p53/genética
5.
Semin Cancer Biol ; 96: 48-63, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788736

RESUMO

Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.


Assuntos
Carcinoma , Melanoma , Humanos , Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Diferenciação Celular/genética , Fenótipo
6.
Biophys J ; 123(12): 1635-1647, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38725244

RESUMO

Collective cell invasion (CCI), a canon of most invasive solid tumors, is an emergent property of the interactions between cancer cells and their surrounding extracellular matrix (ECM). However, tumor populations invariably consist of cells expressing variable levels of adhesive proteins that mediate such interactions, disallowing an intuitive understanding of how tumor invasiveness at a multicellular scale is influenced by spatial heterogeneity of cell-cell and cell-ECM adhesion. Here, we have used a Cellular Potts model-based multiscale computational framework that is constructed on the histopathological principles of glandular cancers. In earlier efforts on homogenous cancer cell populations, this framework revealed the relative ranges of interactions, including cell-cell and cell-ECM adhesion that drove collective, dispersed, and mixed multimodal invasion. Here, we constitute a tumor core of two separate cell subsets showing distinct intra- and inter-subset cell-cell or cell-ECM adhesion strengths. These two subsets of cells are arranged to varying extents of spatial intermingling, which we call the heterogeneity index (HI). We observe that low and high inter-subset cell adhesion favors invasion of high-HI and low-HI intermingled populations with distinct intra-subset cell-cell adhesion strengths, respectively. In addition, for explored values of cell-ECM adhesion strengths, populations with high HI values collectively invade better than those with lower HI values. We then asked how spatial invasion is regulated by progressively intermingled cellular subsets that are epithelial, i.e., showed high cell-cell but poor cell-ECM adhesion, and mesenchymal, i.e., with reversed adhesion strengths to the former. Here too, inter-subset adhesion plays an important role in contextualizing the proportionate relationship between HI and invasion. An exception to this relationship is seen for cases of heterogeneous cell-ECM adhesion where sub-maximal HI patterns with higher outer localization of cells with stronger ECM adhesion collectively invade better than their relatively higher-HI counterparts. Our simulations also reveal how adhesion heterogeneity qualifies collective invasion, when either cell-cell or cell-ECM adhesion type is varied but results in an invasive dispersion when both adhesion types are simultaneously altered.


Assuntos
Adesão Celular , Matriz Extracelular , Modelos Biológicos , Invasividade Neoplásica , Matriz Extracelular/metabolismo , Humanos , Neoplasias/patologia , Neoplasias/metabolismo
7.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796018

RESUMO

Transcription factor p53 (also known as TP53) has been shown to aggregate into cytoplasmic and nuclear inclusions, compromising its native tumor suppressive functions. Recently, p53 has been shown to form amyloids, which play a role in conferring cancerous properties to cells, leading to tumorigenesis. However, the exact pathways involved in p53 amyloid-mediated cellular transformations are unknown. Here, using an in cellulo model of full-length p53 amyloid formation, we demonstrate the mechanism of loss of p53 tumor-suppressive function with concomitant oncogenic gain of functions. Global gene expression profiling of cells suggests that p53 amyloid formation dysregulates genes associated with the cell cycle, proliferation, apoptosis and senescence along with major signaling pathways. This is further supported by a proteome analysis, showing a significant alteration in levels of p53 target proteins and enhanced metabolism, which enables the survival of cells. Our data indicate that specifically targeting the key molecules in pathways affected by p53 amyloid formation, such as cyclin-dependent kinase-1, leads to loss of the oncogenic phenotype and induces apoptosis of cells. Overall, our work establishes the mechanism of the transformation of cells due to p53 amyloids leading to cancer pathogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Amiloide/genética , Amiloide/metabolismo , Apoptose/genética , Carcinogênese/genética , Ciclo Celular/genética , Divisão Celular , Proliferação de Células/genética , Transformação Celular Neoplásica , Mutação com Ganho de Função , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Chem Rev ; 122(6): 6614-6633, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170314

RESUMO

Despite the wealth of knowledge gained about intrinsically disordered proteins (IDPs) since their discovery, there are several aspects that remain unexplored and, hence, poorly understood. A living cell is a complex adaptive system that can be described as a wetware─a metaphor used to describe the cell as a computer comprising both hardware and software and attuned to logic gates─capable of "making" decisions. In this focused Review, we discuss how IDPs, as critical components of the wetware, influence cell-fate decisions by wiring protein interaction networks to keep them minimally frustrated. Because IDPs lie between order and chaos, we explore the possibility that they can be modeled as attractors. Further, we discuss how the conformational dynamics of IDPs manifests itself as conformational noise, which can potentially amplify transcriptional noise to stochastically switch cellular phenotypes. Finally, we explore the potential role of IDPs in prebiotic evolution, in forming proteinaceous membrane-less organelles, in the origin of multicellularity, and in protein conformation-based transgenerational inheritance of acquired characteristics. Together, these ideas provide a new conceptual framework to discern how IDPs may perform critical biological functions despite their lack of structure.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Organelas/química , Conformação Proteica , Mapas de Interação de Proteínas
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941680

RESUMO

The epithelial-to-mesenchymal transition (EMT) plays a critical role during normal development and in cancer progression. EMT is induced by various signaling pathways, including TGF-ß, BMP, Wnt-ß-catenin, NOTCH, Shh, and receptor tyrosine kinases. In this study, we performed single-cell RNA sequencing on MCF10A cells undergoing EMT by TGF-ß1 stimulation. Our comprehensive analysis revealed that cells progress through EMT at different paces. Using pseudotime clustering reconstruction of gene-expression profiles during EMT, we found sequential and parallel activation of EMT signaling pathways. We also observed various transitional cellular states during EMT. We identified regulatory signaling nodes that drive EMT with the expression of important microRNAs and transcription factors. Using a random circuit perturbation methodology, we demonstrate that the NOTCH signaling pathway acts as a key driver of TGF-ß-induced EMT. Furthermore, we demonstrate that the gene signatures of pseudotime clusters corresponding to the intermediate hybrid EMT state are associated with poor patient outcome. Overall, this study provides insight into context-specific drivers of cancer progression and highlights the complexities of the EMT process.


Assuntos
Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes , RNA-Seq/métodos , Transdução de Sinais/genética , Análise de Célula Única/métodos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Neoplasias/classificação , Neoplasias/genética , Prognóstico , Modelos de Riscos Proporcionais , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
10.
Semin Cancer Biol ; 86(Pt 2): 709-719, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35259492

RESUMO

The ascites ecosystem in ovarian cancer is inhabited by complex cell types and is bathed in an environment rich in cytokines, chemokines, and growth factors that directly and indirectly impact metabolism of cancer cells and tumor associated cells. This milieu of malignant ascites, provides a 'rich' environment for the disease to thrive, contributing to every aspect of advanced ovarian cancer, a devastating gynecological cancer with a significant gap in targeted therapeutics. In this perspective we focus our discussions on the 'acellular' constituents of this liquid malignant tumor microenvironment, and how they influence metabolic pathways. Growth factors, chemokines and cytokines are known modulators of metabolism and have been shown to impact nutrient uptake and metabolic flexibility of tumors, yet few studies have explored how their enrichment in malignant ascites of ovarian cancer patients contributes to the metabolic requirements of ascites-resident cells. We focus here on TGF-ßs, VEGF and ILs, which are frequently elevated in ovarian cancer ascites and have all been described to have direct or indirect effects on metabolism, often through gene regulation of metabolic enzymes. We summarize what is known, describe gaps in knowledge, and provide examples from other tumor types to infer potential unexplored roles and mechanisms for ovarian cancer. The distribution and variation in acellular ascites components between patients poses both a challenge and opportunity to further understand how the ascites may contribute to disease heterogeneity. The review also highlights opportunities for studies on ascites-derived factors in regulating the ascites metabolic environment that could act as a unique signature in aiding clinical decisions in the future.


Assuntos
Ascite , Neoplasias Ovarianas , Feminino , Humanos , Ascite/etiologia , Ascite/metabolismo , Ascite/patologia , Ecossistema , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Citocinas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA