Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Small Methods ; 7(9): e2201695, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317010

RESUMO

Poor understanding of intracellular delivery and targeting hinders development of nucleic acid-based therapeutics transported by nanoparticles. Utilizing a siRNA-targeting and small molecule profiling approach with advanced imaging and machine learning biological insights is generated into the mechanism of lipid nanoparticle (MC3-LNP) delivery of mRNA. This workflow is termed Advanced Cellular and Endocytic profiling for Intracellular Delivery (ACE-ID). A cell-based imaging assay and perturbation of 178 targets relevant to intracellular trafficking is used to identify corresponding effects on functional mRNA delivery. Targets improving delivery are analyzed by extracting data-rich phenotypic fingerprints from images using advanced image analysis algorithms. Machine learning is used to determine key features correlating with enhanced delivery, identifying fluid-phase endocytosis as a productive cellular entry route. With this new knowledge, MC3-LNP is re-engineered to target macropinocytosis, and this significantly improves mRNA delivery in vitro and in vivo. The ACE-ID approach can be broadly applicable for optimizing nanomedicine-based intracellular delivery systems and has the potential to accelerate the development of delivery systems for nucleic acid-based therapeutics.


Assuntos
Endocitose , Nanopartículas , RNA Mensageiro/genética , Endocitose/genética , Biologia
2.
Pharmaceutics ; 14(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456688

RESUMO

The iron-binding protein lactoferrin and the cell-penetrating peptides derived from its sequence utilise endocytosis to enter different cell types. The full-length protein has been extensively investigated as a potential therapeutic against a range of pathogenic bacteria, fungi, and viruses, including SARS-CoV-2. As a respiratory antiviral agent, several activity mechanisms have been demonstrated for lactoferrin, at the extracellular and plasma membrane levels, but as a protein that enters cells it may also have intracellular antiviral activity. Characterisation of lactoferrin's binding, endocytic traffic to lysosomes, or recycling endosomes for exocytosis is lacking, especially in lung cell models. Here, we use confocal microscopy, flow cytometry, and degradation assays to evaluate binding, internalisation, endocytic trafficking, and the intracellular fate of bovine lactoferrin in human lung A549 cells. In comparative studies with endocytic probes transferrin and dextran, we show that lactoferrin binds to negative charges on the cell surface and actively enters cells via fluid-phase endocytosis, in a receptor-independent manner. Once inside the cell, we show that it is trafficked to lysosomes where it undergoes degradation within two hours. These findings provide opportunities for investigating both lactoferrin and derived cell-penetrating peptides activities of targeting intracellular pathogens.

3.
J Cancer ; 11(11): 3288-3302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231734

RESUMO

Efficacious anticancer therapies for targeting plasma membrane receptors with antibody based therapeutics are often contingent on sufficient endocytic delivery of receptor and conjugate to lysosomes. This results in downregulation of receptor activity and, in the case of antibody-drug conjugates (ADCs), intracellular release of a drug payload. The oncogenic receptor HER2 is a priority therapeutic target in breast cancer. Known as an "endocytosis resistant" receptor, HER2 thwarts the receptor downregulating efficiency of the frontline treatment trastuzumab and reduces the potential of trastuzumab-based therapies such as trastuzumab-emtansine. We previously demonstrated that strategically inducing trastuzumab and HER2 crosslinking in breast cancer cells promoted endocytosis and lysosomal delivery of the HER2-trastuzumab complex, stimulating downregulation of the receptor. Here we reveal that HER3, but not EGFR, is also concomitantly downregulated with HER2 after crosslinking. This is accompanied by strong activation of MEK/ERK pathway that we show does not directly contribute to HER2/trastuzumab endocytosis. We show that crosslinking induced trastuzumab endocytosis occurs via clathrin-dependent and independent pathways and is an actin-dependent process. Detailed ultrastructural studies of the plasma membrane highlight crosslinking-specific remodelling of microvilli and induction of extensive ruffling. Investigations in a cell model of acquired trastuzumab resistance demonstrate, for the first time, that they are refractory to crosslinking induced HER2 endocytosis and downregulation. This implicates further arrest of HER2 internalisation in developing trastuzumab resistance. Overall our findings highlight the potential of receptor crosslinking as a therapeutic strategy for cancer while exposing the ability of cancer cells to develop resistance via endocytic mechanisms.

4.
J Drug Target ; 15(1): 37-50, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17365272

RESUMO

As they are often designed for lysosomotropic, endosomotropic and/or transcellular delivery, an understanding of intracellular trafficking pathways is essential to enable optimised design of novel polymer therapeutics. Here, we describe a single-step density gradient subcellular fractionation method combined with fluorescent detection analysis that provides a new tool for characterisation of endocytic traffic of polymer therapeutics. Hepatoma (HepG2) cells were used as a model and cell breakage was optimised using a cell cracker to ensure assay of the whole cell population. After removal of unbroken cells and nuclei, the cell lysate as a post-nuclear supernatant (PNS) was layered onto an iodixanol (OptiPrep) density gradient optimised to 5-20%. Early endosomes, late endosomes and lysosomes were identified from gradient fractions by immunoblotting for marker proteins early endosome antigen 1 (EEA 1) and lysosomal associated membrane protein 1 (LAMP 1) using horseradish peroxidase or fluorescently-labelled secondary antibodies. Lysosomes were also detected using N-acetyl-beta-glucosamindase (Hex A) activity. In addition, cells were incubated with Texas-red labelled transferrin (TxR-Tf) for 5 min to specifically label early endosomes and this was directly detected from SDS-PAGE gels. Internalised macromolecules and colloidal particles can potentially alter vesicle buoyant density. To see if typical macromolecules of interest would alter vesicle density or perturb vesicle traffic, HepG2 cells were incubated with dextran or a polyethyleneglycol (PEG)-polyester dendron G4 (1 mg/ml for 24 h). The PEG-polyester dendron G4 caused a slight redistribution of endocytic structures to lower density fractions but immunofluorescence microscopy showed no obvious dendron effects. In conclusion, the combined subcellular fractionation with fluorescent imaging approach described here can be used as a tool for both fundamental cell biology research and/or the quantitative localisation of polymer therapeutics in the endocytic pathway.


Assuntos
Fracionamento Celular/métodos , Endossomos/metabolismo , Lisossomos/metabolismo , Polímeros/metabolismo , Frações Subcelulares/metabolismo , Acetilglucosaminidase/metabolismo , Linhagem Celular , Centrifugação com Gradiente de Concentração , Corantes , Dextranos/farmacologia , Eletroforese em Gel de Poliacrilamida , Endocitose/efeitos dos fármacos , Imunofluorescência , Gangliosidoses GM2/metabolismo , L-Lactato Desidrogenase/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Azul Tripano , Proteínas de Transporte Vesicular/metabolismo
5.
Bioconjug Chem ; 19(3): 656-64, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18269225

RESUMO

The exact mechanisms by which arginine-rich cell-penetrating peptides enter cells are still the subject of debate. Here, we have analyzed in detail the effects of serum and extracellular concentration on the internalization of oligoarginines (R n; n = 4, 8, 12, 16). The presence of serum in the incubation medium had a major influence on the uptake of R12 and R16 peptides but did not affect the uptake of R4 and R8 significantly. Incubation of cells at 37 degrees C with R12 and R16 peptides in serum-containing medium showed that the majority of labeling was confined to punctate endocytic structures. Performing the same experiments in serum-free media led to a dramatic increase in cytosolic labeling, and similarly diffuse R12 and R16 labeling was observed in cells treated with peptides at 4 degrees C. This suggests, in both cases, that the peptides were entering via a nonendocytic mechanism. Further studies on R12 peptide suggest that the initiation of nonendocytic uptake and cytosolic labeling is also dependent on serum concentration and extracellular peptide concentration. At relatively low concentrations, the peptide labels endocytic structures, but upon raising the peptide concentration, the fraction labeling the cytosol increases dramatically and this accompanies a nonlinear increase in total cellular fluorescence. Membrane-associated proteoglycans also contribute to increasing the peptide concentration at the cell surface by enhancing their recruitment via electrostatic interactions. These results demonstrate that uptake mechanisms of these compounds are highly dependent on both the presence of serum and the effective extracellular peptide concentration.


Assuntos
Arginina/química , Arginina/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Proteoglicanas/química , Proteoglicanas/metabolismo , Animais , Apoptose , Células CHO , Cricetinae , Cricetulus , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose , Citometria de Fluxo , Células HeLa , Humanos , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Relação Estrutura-Atividade , Sais de Tetrazólio , Tiazóis , Transferrina/metabolismo
6.
J Cell Mol Med ; 11(4): 670-84, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17760832

RESUMO

Macropinocytosis defines a series of events initiated by extensive plasma membrane reorganization or ruffling to form an external macropinocytic structure that is then enclosed and internalized. The process is constitutive in some organisms and cell types but in others it is only pronounced after growth factor stimulation. Internalized macropinosomes share many features with phagosomes and both are distinguished from other forms of pinocytic vesicles by their large size, morphological heterogeneity and lack of coat structures. A paucity of information is available on other distinguishing features for macropinocytosis such as specific marker proteins and drugs that interfere with its mechanism over other endocytic processes. This has hampered efforts to characterize the dynamics of this pathway and to identify regulatory proteins that are expressed in order to allow it to proceed. Upon internalization, macropinosomes acquire regulatory proteins common to other endocytic pathways, suggesting that their identities as unique structures are short-lived. There is however less consensus regarding the overall fate of the macropinosome cargo or its limiting membrane and processes such as fusion, tubulation, recycling and regulated exocytosis have all been implicated in shaping the macropinosome and directing cargo traffic. Macropinocytosis has also been implicated in the internalization of cell penetrating peptides that are of significant interest to researchers aiming to utilize their translocation abilities to deliver therapeutic entities such as genes and proteins into cells. This review focuses on recent findings on the regulation of macropinocytosis, the intracellular fate of the macropinosome and discusses evidence for the role of this pathway as a mechanism of entry for cell penetrating peptides.


Assuntos
Peptídeos/metabolismo , Pinocitose , Animais , Proteínas de Transporte/metabolismo , Extensões da Superfície Celular/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Proteínas Associadas aos Microtúbulos , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA