Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(1): 35-47.e13, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666121

RESUMO

CRISPR-Cas nucleoproteins target foreign DNA via base pairing with a crRNA. However, a quantitative description of protein binding and nuclease activation at off-target DNA sequences remains elusive. Here, we describe a chip-hybridized association-mapping platform (CHAMP) that repurposes next-generation sequencing chips to simultaneously measure the interactions between proteins and ∼107 unique DNA sequences. Using CHAMP, we provide the first comprehensive survey of DNA recognition by a type I-E CRISPR-Cas (Cascade) complex and Cas3 nuclease. Analysis of mutated target sequences and human genomic DNA reveal that Cascade recognizes an extended protospacer adjacent motif (PAM). Cascade recognizes DNA with a surprising 3-nt periodicity. The identity of the PAM and the PAM-proximal nucleotides control Cas3 recruitment by releasing the Cse1 subunit. These findings are used to develop a model for the biophysical constraints governing off-target DNA binding. CHAMP provides a framework for high-throughput, quantitative analysis of protein-DNA interactions on synthetic and genomic DNA. PAPERCLIP.


Assuntos
Proteínas de Ligação a DNA/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ligação Proteica , Análise de Sequência de DNA/métodos , Sistemas CRISPR-Cas , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia de Fluorescência , Motivos de Nucleotídeos
2.
Proc Natl Acad Sci U S A ; 117(31): 18489-18496, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675237

RESUMO

Synthetic DNA is rapidly emerging as a durable, high-density information storage platform. A major challenge for DNA-based information encoding strategies is the high rate of errors that arise during DNA synthesis and sequencing. Here, we describe the HEDGES (Hash Encoded, Decoded by Greedy Exhaustive Search) error-correcting code that repairs all three basic types of DNA errors: insertions, deletions, and substitutions. HEDGES also converts unresolved or compound errors into substitutions, restoring synchronization for correction via a standard Reed-Solomon outer code that is interleaved across strands. Moreover, HEDGES can incorporate a broad class of user-defined sequence constraints, such as avoiding excess repeats, or too high or too low windowed guanine-cytosine (GC) content. We test our code both via in silico simulations and with synthesized DNA. From its measured performance, we develop a statistical model applicable to much larger datasets. Predicted performance indicates the possibility of error-free recovery of petabyte- and exabyte-scale data from DNA degraded with as much as 10% errors. As the cost of DNA synthesis and sequencing continues to drop, we anticipate that HEDGES will find applications in large-scale error-free information encoding.


Assuntos
DNA/genética , Mutação INDEL , Replicação do DNA , Armazenamento e Recuperação da Informação , Modelos Estatísticos
3.
Proc Natl Acad Sci U S A ; 115(27): E6217-E6226, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29925596

RESUMO

Many large-scale, high-throughput experiments use DNA barcodes, short DNA sequences prepended to DNA libraries, for identification of individuals in pooled biomolecule populations. However, DNA synthesis and sequencing errors confound the correct interpretation of observed barcodes and can lead to significant data loss or spurious results. Widely used error-correcting codes borrowed from computer science (e.g., Hamming, Levenshtein codes) do not properly account for insertions and deletions (indels) in DNA barcodes, even though deletions are the most common type of synthesis error. Here, we present and experimentally validate filled/truncated right end edit (FREE) barcodes, which correct substitution, insertion, and deletion errors, even when these errors alter the barcode length. FREE barcodes are designed with experimental considerations in mind, including balanced guanine-cytosine (GC) content, minimal homopolymer runs, and reduced internal hairpin propensity. We generate and include lists of barcodes with different lengths and error correction levels that may be useful in diverse high-throughput applications, including >106 single-error-correcting 16-mers that strike a balance between decoding accuracy, barcode length, and library size. Moreover, concatenating two or more FREE codes into a single barcode increases the available barcode space combinatorially, generating lists with >1015 error-correcting barcodes. The included software for creating barcode libraries and decoding sequenced barcodes is efficient and designed to be user-friendly for the general biology community.


Assuntos
Sequência de Bases , Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL
4.
Int J Mol Sci ; 19(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320407

RESUMO

Nanomedicine is an emerging field with great potential in disease theranostics. We generated sterically stabilized superparamagnetic iron oxide nanoparticles (s-SPIONs) with average core diameters of 10 and 25 nm and determined the in vivo biodistribution and clearance profiles. Healthy nude mice underwent an intraperitoneal injection of these s-SPIONs at a dose of 90 mg Fe/kg body weight. Tissue iron biodistribution was monitored by atomic absorption spectroscopy and Prussian blue staining. Histopathological examination was performed to assess tissue toxicity. The 10 nm s-SPIONs resulted in higher tissue-iron levels, whereas the 25 nm s-SPIONs peaked earlier and cleared faster. Increased iron levels were detected in all organs and body fluids tested except for the brain, with notable increases in the liver, spleen, and the omentum. The tissue-iron returned to control or near control levels within 7 days post-injection, except in the omentum, which had the largest and most variable accumulation of s-SPIONs. No obvious tissue changes were noted although an influx of macrophages was observed in several tissues suggesting their involvement in s-SPION sequestration and clearance. These results demonstrate that the s-SPIONs do not degrade or aggregate in vivo and intraperitoneal administration is well tolerated, with a broad and transient biodistribution. In an ovarian tumor model, s-SPIONs were shown to accumulate in the tumors, highlighting their potential use as a chemotherapy delivery agent.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Humanos , Injeções Intraperitoneais , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Omento/química , Omento/efeitos dos fármacos , Omento/metabolismo , Tamanho da Partícula , Células RAW 264.7 , Baço/química , Baço/efeitos dos fármacos , Baço/metabolismo , Distribuição Tecidual , Transplante Heterólogo
5.
PLoS Genet ; 9(3): e1003369, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555286

RESUMO

Phenotypic switching allows for rapid transitions between alternative cell states and is important in pathogenic fungi for colonization and infection of different host niches. In Candida albicans, the white-opaque phenotypic switch plays a central role in regulating the program of sexual mating as well as interactions with the mammalian host. White-opaque switching is controlled by genes encoded at the MTL (mating-type-like) locus that ensures that only a or α cells can switch from the white state to the mating-competent opaque state, while a/α cells are refractory to switching. Here, we show that the related pathogen C. tropicalis undergoes white-opaque switching in all three cell types (a, α, and a/α), and thus switching is independent of MTL control. We also demonstrate that C. tropicalis white cells are themselves mating-competent, albeit at a lower efficiency than opaque cells. Transcriptional profiling of C. tropicalis white and opaque cells reveals significant overlap between switch-regulated genes in MTL homozygous and MTL heterozygous cells, although twice as many genes are white-opaque regulated in a/α cells as in a cells. In C. albicans, the transcription factor Wor1 is the master regulator of the white-opaque switch, and we show that Wor1 also regulates switching in C. tropicalis; deletion of WOR1 locks a, α, and a/α cells in the white state, while WOR1 overexpression induces these cells to adopt the opaque state. Furthermore, we show that WOR1 overexpression promotes both filamentous growth and biofilm formation in C. tropicalis, independent of the white-opaque switch. These results demonstrate an expanded role for C. tropicalis Wor1, including the regulation of processes necessary for infection of the mammalian host. We discuss these findings in light of the ancestral role of Wor1 as a transcriptional regulator of the transition between yeast form and filamentous growth.


Assuntos
Candida tropicalis , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Genes de Troca , Reprodução , Fatores de Transcrição/genética , Biofilmes/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida tropicalis/genética , Candida tropicalis/crescimento & desenvolvimento , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Regulação Fúngica da Expressão Gênica , Homozigoto , Fenótipo , Reprodução/genética , Reprodução/fisiologia
6.
Mol Microbiol ; 92(2): 383-98, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612417

RESUMO

Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signalling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signalling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida tropicalis/fisiologia , Candida tropicalis/genética , Candida tropicalis/metabolismo , Perfilação da Expressão Gênica , Feromônios/metabolismo , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo
7.
Eukaryot Cell ; 12(12): 1629-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123269

RESUMO

Candida species exhibit a variety of ploidy states and modes of sexual reproduction. Most species possess the requisite genes for sexual reproduction, recombination, and meiosis, yet only a few have been reported to undergo a complete sexual cycle including mating and sporulation. Candida albicans, the most studied Candida species and a prevalent human fungal pathogen, completes its sexual cycle via a parasexual process of concerted chromosome loss rather than a conventional meiosis. In this study, we examine ploidy changes in Candida tropicalis, a closely related species to C. albicans that was recently revealed to undergo sexual mating. C. tropicalis diploid cells mate to form tetraploid cells, and we show that these can be induced to undergo chromosome loss to regenerate diploid forms by growth on sorbose medium. The diploid products are themselves mating competent, thereby establishing a parasexual cycle in this species for the first time. Extended incubation (>120 generations) of C. tropicalis tetraploid cells under rich culture conditions also resulted in instability of the tetraploid form and a gradual reduction in ploidy back to the diploid state. The fitness levels of C. tropicalis diploid and tetraploid cells were compared, and diploid cells exhibited increased fitness relative to tetraploid cells in vitro, despite diploid and tetraploid cells having similar doubling times. Collectively, these experiments demonstrate distinct pathways by which a parasexual cycle can occur in C. tropicalis and indicate that nonmeiotic mechanisms drive ploidy changes in this prevalent human pathogen.


Assuntos
Candida tropicalis/citologia , Candida tropicalis/genética , Ploidias , Citometria de Fluxo , Genes Fúngicos Tipo Acasalamento , Reprodução
8.
J Phys Chem B ; 127(29): 6470-6478, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37452775

RESUMO

Protein-DNA interactions are fundamental to many biological processes. Proteins must find their target site on a DNA molecule to perform their function, and mechanisms for target search differ across proteins. Especially challenging phenomena to monitor and understand are transient binding events that occur across two DNA target sites, whether occurring in cis or trans. Type IIS restriction endonucleases rely on such interactions. They play a crucial role in safeguarding bacteria against foreign DNA, including viral genetic material. BfiI, a type IIS restriction endonuclease, acts upon a specific asymmetric sequence, 5-ACTGGG-3, and precisely cuts both upper and lower DNA strands at fixed locations downstream of this sequence. Here, we present two single-molecule Förster resonance energy-transfer-based assays to study such interactions in a BfiI-DNA system. The first assay focuses on DNA looping, detecting both "Phi"- and "U"-shaped DNA looping events. The second assay only allows in trans BfiI-target DNA interactions, improving the specificity and reducing the limits on observation time. With total internal reflection fluorescence microscopy, we directly observe on- and off-target binding events and characterize BfiI binding events. Our results show that BfiI binds longer to target sites and that BfiI rarely changes conformations during binding. This newly developed assay could be employed for other DNA-interacting proteins that bind two targets and for the dsDNA substrate BfiI-PAINT, a useful strategy for DNA stretch assays and other super-resolution fluorescence microscopy studies.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Enzimas de Restrição do DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , DNA/química
9.
Nat Commun ; 13(1): 1367, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292641

RESUMO

The S. pyogenes (Sp) Cas9 endonuclease is an important gene-editing tool. SpCas9 is directed to target sites based on complementarity to a complexed single-guide RNA (sgRNA). However, SpCas9-sgRNA also binds and cleaves genomic off-targets with only partial complementarity. To date, we lack the ability to predict cleavage and binding activity quantitatively, and rely on binary classification schemes to identify strong off-targets. We report a quantitative kinetic model that captures the SpCas9-mediated strand-replacement reaction in free-energy terms. The model predicts binding and cleavage activity as a function of time, target, and experimental conditions. Trained and validated on high-throughput bulk-biochemical data, our model predicts the intermediate R-loop state recently observed in single-molecule experiments, as well as the associated conversion rates. Finally, we show that our quantitative activity predictor can be reduced to a binary off-target classifier that outperforms the established state-of-the-art. Our approach is extensible, and can characterize any CRISPR-Cas nuclease - benchmarking natural and future high-fidelity variants against SpCas9; elucidating determinants of CRISPR fidelity; and revealing pathways to increased specificity and efficiency in engineered systems.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Endonucleases/metabolismo , Edição de Genes , RNA Guia de Cinetoplastídeos/genética
10.
Fungal Genet Biol ; 48(7): 668-76, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21496492

RESUMO

Pheromones are ubiquitous from bacteria to mammals - a testament to their importance in regulating inter-cellular communication. In fungal species, they play a critical role in choreographing interactions between mating partners during the program of sexual reproduction. Here, we describe how fungal pheromones are synthesized, their interactions with G protein-coupled receptors, and the signals propagated by this interaction, using Saccharomyces cerevisiae as a reference point. Divergence from this model system is compared amongst the ascomycetes and basidiomycetes, which reveals the wealth of information that has been gleaned from studying pheromone-driven processes across a wide spectrum of the fungal kingdom.


Assuntos
Regulação Fúngica da Expressão Gênica , Feromônios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Basidiomycota/genética , Basidiomycota/fisiologia , Recombinação Genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
11.
Eukaryot Cell ; 9(11): 1690-701, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20870881

RESUMO

Mating in hemiascomycete yeasts involves the secretion of pheromones that induce sexual differentiation in cells of the opposite mating type. Studies in Saccharomyces cerevisiae have revealed that a subpopulation of cells experiences cell death during exposure to pheromone. In this work, we tested whether the phenomenon of pheromone-induced death (PID) also occurs in the opportunistic pathogen Candida albicans. Mating in C. albicans is uniquely regulated by white-opaque phenotypic switching; both cell types respond to pheromone, but only opaque cells undergo the morphological transition and cell conjugation. We show that approximately 20% of opaque cells, but not white cells, of laboratory strain SC5314 experience pheromone-induced death. Furthermore, analysis of mutant strains revealed that PID was significantly reduced in strains lacking Fig1 or Fus1 transmembrane proteins that are induced during the mating process and, we now show, are necessary for efficient mating in C. albicans. The level of PID was also Ca(2+) dependent, as chelation of Ca(2+) ions increased cell death to almost 50% of the population. However, in contrast to S. cerevisiae PID, pheromone-induced killing of C. albicans cells was largely independent of signaling via the Ca(2+)-dependent protein phosphatase calcineurin, even when combined with the loss of Cmk1 and Cmk2 proteins. Finally, we demonstrate that levels of PID vary widely between clinical isolates of C. albicans, with some strains experiencing close to 70% cell death. We discuss these findings in light of the role of prodeath and prosurvival pathways operating in yeast cells undergoing the morphological response to pheromone.


Assuntos
Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Feromônios/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/fisiologia , Sequência de Bases , Sinalização do Cálcio , Candida albicans/genética , Candida albicans/fisiologia , Conjugação Genética , DNA Fúngico/genética , Genes Fúngicos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/fisiologia , Humanos , Técnicas In Vitro , Fator de Acasalamento , Dados de Sequência Molecular , Mutação , Peptídeos/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Tacrolimo/farmacologia
12.
Biomater Res ; 25(1): 7, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789768

RESUMO

BACKGROUND: Understanding the regional vascular delivery of particles to tumour sites is a prerequisite for developing new diagnostic and therapeutic composites for treatment of oncology patients. We describe a novel imageable 67Ga-radiolabelled polymer composite that is biocompatible in an animal tumour model and can be used for preclinical imaging investigations of the transit of different sized particles through arterial networks of normal and tumour-bearing organs. RESULTS: Radiolabelling of polymer microspheres with 67Ga was achieved using a simple mix and wash method, with tannic acid as an immobilising agent. Final in vitro binding yields after autoclaving averaged 94.7%. In vivo stability of the composite was demonstrated in New Zealand white rabbits by intravenous administration, and intrahepatic artery instillations were made in normal and VX2 tumour implanted rabbit livers. Stability of radiolabel was sufficient for rabbit lung and liver imaging over at least 3 hours and 1 hour respectively, with lung retention of radiolabel over 91%, and retention in both normal and VX2 implanted livers of over 95%. SPECT-CT imaging of anaesthetised animals and planar imaging of excised livers showed visible accumulation of radiolabel in tumours. Importantly, microsphere administration and complete liver dispersal was more easily achieved with 8 µm diameter MS than with 30 µm MS, and the smaller microspheres provided more distinct and localised tumour imaging. CONCLUSION: This method of producing 67Ga-radiolabelled polymer microspheres is suitable for SPECT-CT imaging of the regional vascular delivery of microspheres to tumour sites in animal models. Sharper distinction of model tumours from normal liver was obtained with smaller MS, and tumour resolution may be further improved by the use of 68Ga instead of 67Ga, to enable PET imaging.

13.
Nat Biotechnol ; 39(1): 84-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895548

RESUMO

Engineered SpCas9s and AsCas12a cleave fewer off-target genomic sites than wild-type (wt) Cas9. However, understanding their fidelity, mechanisms and cleavage outcomes requires systematic profiling across mispaired target DNAs. Here we describe NucleaSeq-nuclease digestion and deep sequencing-a massively parallel platform that measures the cleavage kinetics and time-resolved cleavage products for over 10,000 targets containing mismatches, insertions and deletions relative to the guide RNA. Combining cleavage rates and binding specificities on the same target libraries, we benchmarked five SpCas9 variants and AsCas12a. A biophysical model built from these data sets revealed mechanistic insights into off-target cleavage. Engineered Cas9s, especially Cas9-HF1, dramatically increased cleavage specificity but not binding specificity compared to wtCas9. Surprisingly, AsCas12a cleavage specificity differed little from that of wtCas9. Initial DNA cleavage sites and end trimming varied by nuclease, guide RNA and the positions of mispaired nucleotides. More broadly, NucleaSeq enables rapid, quantitative and systematic comparisons of specificity and cleavage outcomes across engineered and natural nucleases.


Assuntos
Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Proteínas Associadas a CRISPR , Endodesoxirribonucleases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Edição de Genes , Cinética , Ligação Proteica/genética , Engenharia de Proteínas , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato/genética
14.
Langmuir ; 26(6): 4465-72, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19950943

RESUMO

The preparation and properties of an aqueous ferrofluid consisting of a concentrated (>65 wt %) dispersion of sterically stabilized superparamagnetic, iron oxide (maghemite) nanoparticles stable for several months at high ionic strength and over a broad pH range is described. The 6-8 nm diameter nanoparticles are individually coated with a short poly(acrylic acid)-b-poly(acrylamide) copolymer, designed to form the thinnest possible steric stabilizing layer while remaining strongly attached to the iron oxide surface over a wide range of nanoparticle concentrations. Thermogravimetric analysis yields an iron oxide content of 76 wt % in the dried particles, consistent with a dry polymer coating of approximately 1 nm in thickness, while the poly(acrylamide) chain length indicated by electrospray mass spectrometry is consistent with the 4-5 nm increase in the hydrodynamic radius observed by light scattering when the poly(acrylamide) stabilizing chains are solvated. Saturation magnetization experiments indicate nonmagnetic surface layers resulting from the strong chemical attachment of the poly(acrylic acid) block to the particle surface, also observed by Fourier transform infrared spectroscopy.


Assuntos
Acrilamidas/química , Compostos Férricos/química , Magnetismo , Nanopartículas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X
15.
Int J Nanomedicine ; 14: 889-900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774340

RESUMO

PURPOSE: Selective internal radiation therapy (SIRT) is an effective treatment option for liver tumors, using Y-90-loaded polymer microspheres that are delivered via catheterization of the hepatic artery. Since Y-90 is a beta emitter and not conveniently imaged by standard clinical instrumentation, dosimetry is currently evaluated in each patient using a surrogate particle, 99mTechnetium-labeled macroaggregated albumin (99mTc-MAA). We report a new composite consisting of 99mTc-labeled nanoparticles attached to the same polymer microspheres as used for SIRT, which can be imaged with standard SPECT. METHODS: Carbon nanoparticles with an encapsulated core of 99mTc were coated with the polycation protamine sulfate to provide electrostatic attachment to anionic polystyrene sulfonate microspheres of different sizes (30, 12, and 8 µm). The in vivo stability of these composites was determined via intravenous injection and entrapment in the capillary network of normal rabbit lungs for up to 3 hours. Furthermore, we evaluated their biodistribution in normal rabbit livers, and livers implanted with VX2 tumors, following intrahepatic artery instillation. RESULTS: We report distribution tests for three different sizes of radiolabeled microspheres and compare the results with those obtained using 99mTc-MAA. Lung retention of the radiolabeled microspheres ranged from 72.8% to 92.9%, with the smaller diameter microspheres showing the lowest retention. Liver retention of the microspheres was higher, with retention in normal livers ranging from 99.2% to 99.8%, and in livers with VX2 tumors from 98.2% to 99.2%. The radiolabeled microspheres clearly demonstrated preferential uptake at tumor sites due to the increased arterial perfusion produced by angiogenesis. CONCLUSION: We describe a novel use of radiolabeled carbon nanoparticles to generate an imageable microsphere that is stable in vivo under the shear stress conditions of arterial networks. Following intra-arterial instillation in the normal rabbit liver, they distribute in a distinct segmented pattern, with the smaller microspheres extending throughout the organ in finer detail, while still being well retained within the liver. Furthermore, in livers hosting an implanted VX2 tumor, they reveal the increased arterial perfusion of tumor tissue resulting from angiogenesis. These novel composites may have potential as a more representative mimic of the vascular distribution of therapeutic microspheres in patients undergoing SIRT.


Assuntos
Artérias/diagnóstico por imagem , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/irrigação sanguínea , Pulmão/irrigação sanguínea , Microesferas , Tecnécio/química , Animais , Linhagem Celular Tumoral , Feminino , Injeções Intra-Arteriais , Injeções Intravenosas , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Pulmão/diagnóstico por imagem , Masculino , Poliestirenos/química , Coelhos , Compostos Radiofarmacêuticos/química , Agregado de Albumina Marcado com Tecnécio Tc 99m/administração & dosagem , Agregado de Albumina Marcado com Tecnécio Tc 99m/química , Distribuição Tecidual , Resultado do Tratamento
16.
Bio Protoc ; 8(7)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29770351

RESUMO

Whole-lifespan single-cell analysis has greatly increased our understanding of fundamental cellular processes such as cellular aging. To observe individual cells across their entire lifespan, all progeny must be removed from the growth medium, typically via manual microdissection. However, manual microdissection is laborious, low-throughput, and incompatible with fluorescence microscopy. Here, we describe assembly and operation of the multiplexed-Fission Yeast Lifespan Microdissector (multFYLM), a high-throughput microfluidic device for rapidly acquiring single-cell whole-lifespan imaging. multFYLM captures approximately one thousand rod-shaped fission yeast cells from up to six different genetic backgrounds or treatment regimens. The immobilized cells are fluorescently imaged for over a week, while the progeny cells are removed from the device. The resulting datasets yield high-resolution multi-channel images that record each cell's replicative lifespan. We anticipate that the multFYLM will be broadly applicable for single-cell whole-lifespan studies in the fission yeast (Schizosaccharomyces pombe) and other symmetrically-dividing unicellular organisms.

17.
Elife ; 72018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30020075

RESUMO

The heterochromatin spreading reaction is a central contributor to the formation of gene-repressive structures, which are re-established with high positional precision, or fidelity, following replication. How the spreading reaction contributes to this fidelity is not clear. To resolve the origins of stable inheritance of repression, we probed the intrinsic character of spreading events in fission yeast using a system that quantitatively describes the spreading reaction in live single cells. We show that spreading triggered by noncoding RNA-nucleated elements is stochastic, multimodal, and fluctuates dynamically across time. This lack of stability correlates with high histone turnover. At the mating type locus, this unstable behavior is restrained by an accessory cis-acting element REIII, which represses histone turnover. Further, REIII safeguards epigenetic memory against environmental perturbations. Our results suggest that the most prevalent type of spreading, driven by noncoding RNA-nucleators, is epigenetically unstable and requires collaboration with accessory elements to achieve high fidelity.


Assuntos
Epigênese Genética , Heterocromatina/metabolismo , RNA não Traduzido/genética , Schizosaccharomyces/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Genes Fúngicos Tipo Acasalamento , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Hidroxiureia/farmacologia , Padrões de Herança/genética , Mutação/genética , Reprodutibilidade dos Testes , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Análise de Célula Única , Processos Estocásticos , Estresse Fisiológico/efeitos dos fármacos , Temperatura
18.
Elife ; 62017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139976

RESUMO

The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.


Assuntos
Divisão Celular , Replicação do DNA , Viabilidade Microbiana , Schizosaccharomyces/fisiologia , Técnicas Microbiológicas , Microfluídica , Análise de Célula Única , Fatores de Tempo
19.
Int J Nanomedicine ; 12: 899-909, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184160

RESUMO

Physiologically stable multimodality imaging probes for positron emission tomography/single-photon emission computed tomography (PET/SPECT)-magnetic resonance imaging (MRI) were synthesized using the superparamagnetic maghemite iron oxide (γ-Fe2O3) nanoparticles (SPIONs). The SPIONs were sterically stabilized with a finely tuned mixture of diblock copolymers with either methoxypolyethylene glycol (MPEG) or primary amine NH2 end groups. The radioisotope for PET or SPECT imaging was incorporated with the SPIONs at high temperature. 57Co2+ ions with a long half-life of 270.9 days were used as a model for the radiotracer to study the kinetics of radiolabeling, characterization, and the stability of the radiolabeled SPIONs. Radioactive 67Ga3+ and Cu2+-labeled SPIONs were also produced successfully using the optimized conditions from the 57Co2+-labeling process. No free radioisotopes were detected in the aqueous phase for the radiolabeled SPIONs 1 week after dispersion in phosphate-buffered saline (PBS). All labeled SPIONs were not only well dispersed and stable under physiological conditions but also noncytotoxic in vitro. The ability to design and produce physiologically stable radiolabeled magnetic nanoparticles with a finely controlled number of functionalizable end groups on the SPIONs enables the generation of a desirable and biologically compatible multimodality PET/SPECT-MRI agent on a single T2 contrast MRI probe.


Assuntos
Coloides/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Células 3T3-L1 , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dextranos/química , Ligantes , Nanopartículas de Magnetita/química , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Polietilenoglicóis , Ratos
20.
Front Microbiol ; 7: 780, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303374

RESUMO

Phenotypic diversity is critical to the lifestyles of many microbial species, enabling rapid responses to changes in environmental conditions. In the human fungal pathogen Candida albicans, cells exhibit heritable switching between two phenotypic states, white and opaque, which yield differences in mating, filamentous growth, and interactions with immune cells in vitro. Here, we address the in vivo virulence properties of the two cell states in a zebrafish model of infection. Multiple attributes were compared including the stability of phenotypic states, filamentation, virulence, dissemination, and phagocytosis by immune cells, and phenotypes equated across three different host temperatures. Importantly, we found that both white and opaque cells could establish a lethal systemic infection. The relative virulence of the two cell types was temperature dependent; virulence was similar at 25°C, but at higher temperatures (30 and 33°C) white cells were significantly more virulent than opaque cells. Despite the difference in virulence, fungal burden, and dissemination were similar between cells in the two states. Additionally, both white and opaque cells exhibited robust filamentation during infection and blocking filamentation resulted in decreased virulence, establishing that this program is critical for pathogenesis in both cell states. Interactions between C. albicans cells and immune cells differed between white and opaque states. Macrophages and neutrophils preferentially phagocytosed white cells over opaque cells in vitro, and neutrophils showed preferential phagocytosis of white cells in vivo. Together, these studies distinguish the properties of white and opaque cells in a vertebrate host, and establish that the two cell types demonstrate both important similarities and key differences during infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA