Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 193(1): 229-233, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37186777

RESUMO

Extrachromosomal circular DNAs (eccDNAs) are found in many eukaryotic organisms. EccDNA-powered copy number variation plays diverse roles, from oncogenesis in humans to herbicide resistance in crop weeds. Here, we report interspecific eccDNA flow and its dynamic behavior in soma cells of natural populations and F1 hybrids of Amaranthus sp. The glyphosate-resistance (GR) trait is controlled by eccDNA-based amplification harboring the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (eccDNA replicon), the molecular target of glyphosate. We documented pollen-mediated transfer of eccDNA in experimental hybrids between glyphosate-susceptible Amaranthus tuberculatus and GR Amaranthus palmeri. Experimental hybridization and fluorescence in situ hybridization (FISH) analysis revealed that the eccDNA replicon in Amaranthus spinosus derived from GR A. palmeri by natural hybridization. FISH analysis also revealed random chromosome anchoring and massive eccDNA replicon copy number variation in soma cells of weedy hybrids. The results suggest that eccDNAs are inheritable across compatible species, contributing to genome plasticity and rapid adaptive evolution.


Assuntos
Amaranthus , Herbicidas , Humanos , Amaranthus/genética , Resistência a Herbicidas/genética , Variações do Número de Cópias de DNA , Hibridização in Situ Fluorescente , DNA , DNA Circular , Herbicidas/farmacologia
2.
Pest Manag Sci ; 79(11): 4290-4294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37345512

RESUMO

BACKGROUND: An Italian ryegrass population from Arkansas, USA developed glyphosate resistance due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. The plants in this population with approximately 70 EPSPS copies were used in the present study for the physical mapping of amplified copies of EPSPS gene to determine the possible mechanism of EPSPS gene amplification conferring glyphosate resistance in Italian ryegrass. RESULT: Fluorescence in situ hybridization (FISH) analysis of glyphosate resistant (GR) Italian ryegrass plants with approximately 70 EPSPS copies displayed EPSPS hybridization signals randomly on most of the metaphase chromosomes. Glyphosate susceptible (GS) Italian ryegrass plants with one EPSPS copy displayed single prominent EPSPS hybridization signal, which was co-localized with 5S rDNA locus along with few additional signals on the outside of chromosomes. Pulsed-field gel electrophoresis (PFGE) followed by DNA blot using EPSPS gene as a probe identified a prominent EPSPS hybridization around the 400 kb region in GR DNA samples, but not in GS DNA samples. CONCLUSION: We report the extrachromosomal DNA-mediated glyphosate resistance in Italian ryegrass. Physical mapping of amplified copies of EPSPS gene in Italian ryegrass by FISH gives us a clue that the amplified copies of EPSPS gene may be present in the extrachromosomal DNA elements. Further analysis by PFGE followed by DNA blotting revealed that the extrachromosomal DNA containing EPSPS is approximately 400 kb similar in size with that of eccDNA replicon in Amaranthus palmeri. © 2023 Society of Chemical Industry.

3.
Sci Rep ; 12(1): 17583, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266371

RESUMO

The development of next-generation sequencing (NGS) enabled a shift from array-based genotyping to directly sequencing genomic libraries for high-throughput genotyping. Even though whole-genome sequencing was initially too costly for routine analysis in large populations such as breeding or genetic studies, continued advancements in genome sequencing and bioinformatics have provided the opportunity to capitalize on whole-genome information. As new sequencing platforms can routinely provide high-quality sequencing data for sufficient genome coverage to genotype various breeding populations, a limitation comes in the time and cost of library construction when multiplexing a large number of samples. Here we describe a high-throughput whole-genome skim-sequencing (skim-seq) approach that can be utilized for a broad range of genotyping and genomic characterization. Using optimized low-volume Illumina Nextera chemistry, we developed a skim-seq method and combined up to 960 samples in one multiplex library using dual index barcoding. With the dual-index barcoding, the number of samples for multiplexing can be adjusted depending on the amount of data required, and could be extended to 3,072 samples or more. Panels of doubled haploid wheat lines (Triticum aestivum, CDC Stanley x CDC Landmark), wheat-barley (T. aestivum x Hordeum vulgare) and wheat-wheatgrass (Triticum durum x Thinopyrum intermedium) introgression lines as well as known monosomic wheat stocks were genotyped using the skim-seq approach. Bioinformatics pipelines were developed for various applications where sequencing coverage ranged from 1 × down to 0.01 × per sample. Using reference genomes, we detected chromosome dosage, identified aneuploidy, and karyotyped introgression lines from the skim-seq data. Leveraging the recent advancements in genome sequencing, skim-seq provides an effective and low-cost tool for routine genotyping and genetic analysis, which can track and identify introgressions and genomic regions of interest in genetics research and applied breeding programs.


Assuntos
Genoma de Planta , Hordeum , Genótipo , Genoma de Planta/genética , Marcadores Genéticos , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/genética , Hordeum/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Genotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA