Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617092

RESUMO

Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an 'Internet of vehicles' with the potential to significantly enhance citizens' mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.


Assuntos
Algoritmos , Heurística , Cidades , Simulação por Computador , Inteligência
2.
Simul Model Pract Theory ; 106: 102166, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32837454

RESUMO

The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.

3.
Algorithms ; 15(2): 40, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35909649

RESUMO

Looking at current enterprise resource planning systems shows that material requirements planning (MRP) is one of the main production planning approaches implemented there. The MRP planning parameters lot size, safety stock, and planned lead time, have to be identified for each MRP planned material. With increasing production system complexity, more planning parameters have to be defined. Simulation-based optimization is known as a valuable tool for optimizing these MRP planning parameters for the underlying production system. In this article, a fast and easy-to-apply simheuristic was developed with the objective to minimize overall costs. The simheuristic sets the planning parameters lot size, safety stock, and planned lead time for the simulated stochastic production systems. The developed simheuristic applies aspects of simulation annealing (SA) for an efficient metaheuristic-based solution parameter sampling. Additionally, an intelligent simulation budget management (SBM) concept is introduced, which skips replications of not promising iterations. A comprehensive simulation study for a multi-item and multi-staged production system structure is conducted to evaluate its performance. Different simheuristic combinations and parameters are tested, with the result that the combination of SA and SBM led to the lowest overall costs. The contributions of this article are an easy implementable simheuristic for MRP parameter optimization and a promising concept to intelligently manage simulation budget.

4.
Sensors (Basel) ; 10(10): 8920-37, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163388

RESUMO

As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called "hot spot" problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this "hot spot" problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Conservação de Recursos Energéticos/métodos , Tecnologia sem Fio/instrumentação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA