Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(20): 11593-11608, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400798

RESUMO

Ionic liquids (ILs) containing sufficiently long alkyl chains form amphiphilic nanostructures with well-defined polar and non-polar domains. Here we have explored the robustness of these amphiphilic nanostructures to added solutes and gained insight into how the nature of the solute and IL ions affect the partitioning of these solutes within the nanostructured domains of ILs. To achieve this, small angle X-ray scattering (SAXS) investigations were performed and discussed for mixtures of 9 different molecular compounds with 6 different ILs containing imidazolium cations. The amphiphilic nanostructure of ILs persisted to high solute concentrations, over 50 mol% of added solute for most 1-butyl-3-methylimidazolium ILs and above 80 mol% for most 1-decyl-3-methylimidazolium ILs. Solute partitioning within these domains was found to be controlled by the inherent polarity and size of the solute, as well as specific interactions between the solute and IL ions, with SAXS results corroborated with IR spectroscopy and molecular dynamics simulations. Molecular dynamics simulations also revealed the ability to induce π+-π+ stacking between imidazolium cations through the use of these added molecular compounds. Collectively, these results provide scope for the selection of IL ions to rationally influence and control the partitioning behaviour of given solutes within the amphiphilic nanostructure of ILs.

2.
Exp Mol Med ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39349833

RESUMO

Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.

3.
Cells ; 12(16)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37626839

RESUMO

The generation of mature and vascularized human pluripotent stem cell-derived cardiac organoids (hPSC-COs) is necessary to ensure the validity of drug screening and disease modeling. This study investigates the effects of cellular aggregate (CA) stemness and self-organization on the generation of mature and vascularized hPSC-COs and elucidates the mechanisms underlying cardiac organoid (CO) maturation and vascularization. COs derived from 2-day-old CAs with high stemness (H-COs) and COs derived from 5-day-old CAs with low stemness (L-COs) were generated in a self-organized microenvironment via Wnt signaling induction. This study finds that H-COs exhibit ventricular, structural, metabolic, and functional cardiomyocyte maturation and vessel networks consisting of endothelial cells, smooth muscle cells, pericytes, and basement membranes compared to L-COs. Transcriptional profiling shows the upregulation of genes associated with cardiac maturation and vessel formation in H-COs compared with the genes in L-COs. Through experiments with LIMK inhibitors, the activation of ROCK-LIMK-pCofilin via ECM-integrin interactions leads to cardiomyocyte maturation and vessel formation in H-COs. Furthermore, the LIMK/Cofilin signaling pathway induces TGFß/NODAL and PDGF pathway activation for the maturation and vascularization of H-COs. The study demonstrates for the first time that LIMK/Cofilin axis activation plays an important role in the generation of mature and vascularized COs.


Assuntos
Células Endoteliais , Organoides , Humanos , Miócitos Cardíacos , Via de Sinalização Wnt , Fatores de Despolimerização de Actina , Matriz Extracelular , Neovascularização Patológica , Integrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA