Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(18): e2308934, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38161260

RESUMO

Exsolution generates metal nanoparticles anchored within crystalline oxide supports, ensuring efficient exposure, uniform dispersion, and strong nanoparticle-perovskite interactions. Increased doping level in the perovskite is essential for further enhancing performance in renewable energy applications; however, this is constrained by limited surface exsolution, structural instability, and sluggish charge transfer. Here, hybrid composites are fabricated by vacuum-annealing a solution containing SrTiO3 photoanode and Co cocatalyst precursors for photoelectrochemical water-splitting. In situ transmission electron microscopy identifies uniform, high-density Co particles exsolving from amorphous SrTiO3 films, followed by film-crystallization at elevated temperatures. This unique process extracts entire Co dopants with complete structural stability, even at Co doping levels exceeding 30%, and upon air exposure, the Co particles embedded in the film oxidize to CoO, forming a Schottky junction at the interface. These conditions maximize photoelectrochemical activity and stability, surpassing those achieved by Co post-deposition and Co exsolution from crystalline oxides. Theoretical calculations demonstrate in the amorphous state, dopant─O bonds become weaker while Ti─O bonds remain strong, promoting selective exsolution. As expected from the calculations, nearly all of the 30% Fe dopants exsolve from SrTiO3 in an H2 environment, despite the strong Fe─O bond's low exsolution tendency. These analyses unravel the mechanisms driving the amorphous exsolution.

2.
Molecules ; 26(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576947

RESUMO

Surface reconstruction engineering is an effective strategy to promote the catalytic activities of electrocatalysts, especially for water oxidation. Taking advantage of the physicochemical properties of precatalysts by manipulating their structural self-reconstruction levels provide a promising methodology for achieving suitable catalysts. In this review, we focus on recent advances in research related to the rational control of the process and level of surface transformation ultimately to design advanced oxygen evolution electrocatalysts. We start by discussing the original contributions to surface changes during electrochemical reactions and related factors that can influence the electrocatalytic properties of materials. We then present an overview of current developments and a summary of recently proposed strategies to boost electrochemical performance outcomes by the controlling structural self-reconstruction process. By conveying these insights, processes, general trends, and challenges, this review will further our understanding of surface reconstruction processes and facilitate the development of high-performance electrocatalysts beyond water oxidation.

3.
J Am Chem Soc ; 141(16): 6690-6697, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30938992

RESUMO

A precise control of the size, density, and distribution of metal nanoparticles dispersed on functional oxide supports is critical for promoting catalytic activity and stability in renewable energy and catalysis devices. Here, we measure the growth kinetics of individual Co particles ex-solved on SrTi0.75Co0.25O3-δ polycrystalline thin films under a high vacuum, and at various temperatures and grain sizes using in situ transmission electron microscopy. The ex-solution preferentially occurs at grain boundaries and corners which appear essential for controlling particle density and distribution, and enabling low temperature ex-solution. The particle reaches a saturated size after a few minutes, and the size depends on temperature. Quantitative measurements with a kinetic model determine the rate limiting step, vacancy formation enthalpy, ex-solution enthalpy, and activation energy for particle growth. The ex-solved particles are tightly socketed, preventing interactions among them over 800 °C. Furthermore, we obtain the first direct clarification of the active reaction site for CO oxidation-the Co-oxide interface, agreeing well with density functional theory calculations.

4.
Nano Lett ; 18(2): 1110-1117, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29357254

RESUMO

In many ion-conducting polycrystalline oxides, grain boundaries are generally accepted as rate-limiting obstacles to rapid ionic diffusion, often resulting in overall sluggish transport. Consequently, based on a precise understanding of the structural and compositional features at grain boundaries, systematic control of the polycrystalline microstructure is a key factor to achieve better ionic conduction performance. In this study, we clarify that a nanometer-thick amorphous phase at most grain boundaries in proton-conducting BaCeO3 polycrystals is responsible for substantial retardation of proton migration and moreover is very reactive with water and carbon dioxide gas. By a combination of atomic-scale chemical analysis and physical imaging, we demonstrate that highly densified BaCeO3 polycrystals free of a grain-boundary amorphous phase can be easily fabricated by a conventional ceramic process and show sufficiently high proton conductivity together with significantly improved chemical stability. These findings emphasize the value of direct identification of intergranular phases and subsequent manipulation of their distribution in ion-conducting oxide polycrystals.

5.
Phys Chem Chem Phys ; 18(42): 29495-29505, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27747347

RESUMO

Oxygen transport in the mixed ionic-electronic conducting perovskite-oxides SrTi1-yFeyO3-δ (with y = 0.5 and y = 1.0) was studied by oxygen isotope exchange measurements. Experiments were performed on thin-film samples that were grown by Pulsed Laser Deposition (PLD) on MgO substrates. Isotope penetration profiles were introduced by 18O2/16O2 exchanges into the plane of the films at various temperatures in the range 773 < T/K < 973 at an oxygen activity aO2 = 0.5. Isotope profiles were determined subsequently by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and their analysis yielded tracer diffusion coefficients D* and oxygen surface exchange coefficients k*. Activation energies for oxygen diffusion ΔHD* and surface exchange ΔHk* were obtained. Isothermal values of D* and values of ΔHD* are compared with literature data as a function of Fe content. D* is seen to increase monotonically with Fe content; ΔHD* shows more complex behaviour. D* and ΔHD* are also compared with the predictions of defect-chemical models. Analogous comparisons with literature data for k* and ΔHk* indicate, in contrast to prior studies, no mechanistic difference between electron-poor and electron-rich materials. It is concluded that the single operative mechanism of surface exchange for the entire series of STF compositions requires conduction-band electrons (minority electronic charge-carriers).

6.
Angew Chem Int Ed Engl ; 55(43): 13499-13503, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27527504

RESUMO

In most proton-conducing perovskite oxides, the electrostatic attraction between negatively charged acceptor dopants and protonic defects having a positive charge is known to be a major cause of retardation of proton conduction, a phenomenon that is generally referred to as proton trapping. We experimentally show that proton trapping can be suppressed by clustering of positively charged oxygen vacancies to acceptors in BaZrO3-δ and BaCeO3-δ . In particular, to ensure the vacancy-acceptor association is effective against proton trapping, the valence electron density of acceptors should not significantly vary when the oxygen vacancies cluster, based on the weak hybridization between the valence d or p orbitals of acceptors and the 2p orbitals of oxygen.

7.
Clin Orthop Surg ; 16(3): 485-493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38827755

RESUMO

Background: Sagittal talar translation is an important factor influencing the sagittal alignment of total ankle arthroplasty (TAA). Thus, accurate measurement of sagittal talar translation is crucial. This study proposes a simple method (tibiotalar distance [TTD]) that can quantify talar translation without being affected by the ankle and subtalar joint condition or the talar component position in patients with TAA. Methods: We enrolled 280 eligible patients (296 ankles) who underwent primary TAA between 2005 and 2019 and retrospectively reviewed them for sagittal talar translation. The TTD was measured for each patient on weight-bearing lateral ankle radiographs by 3 raters. In addition, we analyzed interrater and intrarater reliability for the TTD method. Results: We found that the TTD method could quantify the talar translation and was not affected by the preoperative condition of the ankle joint surface, subtalar joint pathologies, or the postoperative talar component position. The TTD method showed an excellent intraclass correlation coefficient (> 0.9) in all interrater and intrarater reliability analyses. In the analysis of 157 healthy, unoperated contralateral ankles, we identified that TTD showed a Gaussian distribution (p = 0.284) and a mean of 38.91 mm (normal range, 29.63-48.20 mm). Conclusions: The TTD method is a simple and reliable method that could be applied to patients with TAA to assess the sagittal talar translation regardless of the pre-and postoperative joint condition and implantation status.


Assuntos
Artroplastia de Substituição do Tornozelo , Tálus , Humanos , Artroplastia de Substituição do Tornozelo/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Tálus/diagnóstico por imagem , Tálus/cirurgia , Adulto , Reprodutibilidade dos Testes , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/cirurgia , Idoso de 80 Anos ou mais , Radiografia
8.
Chem Commun (Camb) ; 60(56): 7224-7227, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38912646

RESUMO

In this work, experimental and theoretical analyses reveal that different types of Cu wires significantly change the adsorption properties of reactant molecules and the benzyl alcohol oxidation reaction performance. In particular, CuO nanowires in situ grown on Cu foam exhibit the best performance with a low potential of 1.39 V at a current density of 200 mA cm-2, high selectivity to benzoic acid production, and good operational stability.

9.
Adv Mater ; 36(25): e2307286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516842

RESUMO

Solid oxide fuel cells that operate at intermediate temperatures require efficient catalysts to enhance the inherently poor electrochemical activity of the composite electrodes. Here, a simple and practical electrochemical deposition method is presented for fabricating a PrOx overlayer on lanthanum strontium manganite-yttria-stabilized zirconia (LSM-YSZ) composite electrodes. The method requires less than four minutes for completion and can be carried out under at ambient temperature and pressure. Crucially, the treatment significantly improves the electrode's performance without requiring heat treatment or other supplementary processes. The PrOx-coated LSM-YSZ electrode exhibits an 89% decrease in polarization resistance at 650 °C (compared to an untreated electrode), maintaining a tenfold reduction after ≈400 h. Transmission line model analysis using impedance spectra confirms how PrOx coating improved the oxygen reduction reaction activity. Further, tests with anode-supported single cells reveal an outstanding peak power density compared to those of other LSM-YSZ-based cathodes (e.g., 418 mW cm-2 at 650 °C). Furthermore, it is demonstrated that multicomponent coating, such as (Pr,Ce)Ox, can also be obtained with this method. Overall, the observations offer a promising route for the development of high-performance solid oxide fuel cells.

10.
Nat Commun ; 15(1): 1185, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332123

RESUMO

Recently, the cost of lithium-ion batteries has risen as the price of lithium raw materials has soared and fluctuated. Notably, the highest cost of lithium production comes from the impurity elimination process to satisfy the battery-grade purity of over 99.5%. Consequently, re-evaluating the impact of purity becomes imperative for affordable lithium-ion batteries. In this study, we unveil that a 1% Mg impurity in the lithium precursor proves beneficial for both the lithium production process and the electrochemical performance of resulting cathodes. This is attributed to the increased nucleation seeds and unexpected site-selective doping effects. Moreover, when extended to an industrial scale, low-grade lithium is found to reduce production costs and CO2 emissions by up to 19.4% and 9.0%, respectively. This work offers valuable insights into the genuine sustainability of lithium-ion batteries.

11.
Small Methods ; 8(1): e2300790, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749956

RESUMO

Employing porous structures is essential in high-performance electrochemical energy devices. However, obtaining uniform functional coatings on high-tortuosity structures can be challenging, even with specialized processes such as atomic layer deposition (ALD). Herein, a novel method for achieving a porous composite electrode for solid oxide fuel cells by coating La0.6 Sr0.4 Co0.2 Fe0.8 O3 -δ (LSCF) powders with ZrO2 using a powder ALD process is presented. Unlike conventional ALD, powder ALD can be used to fabricate extremely uniform coatings on porous electrodes with a thickness of tens of micrometers. The powder ALD ZrO2 coating is found to effectively suppress chemical degradation of the LSCF electrodes. The cell with the powder ALD coated cathode shows a 2.2 times higher maximum power density and 60% lower thermal degradation in activation resistance than the bare LSCF cathode cell at 700-750 °C. The result demonstrated in this study is expected to have significant implications for high-performance and durable electrodes in energy conversion/storage devices.

12.
Adv Mater ; 36(24): e2313731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38437162

RESUMO

Light-activated chemiresistors offer a powerful approach to achieving lower-temperature gas sensing with unprecedented sensitivities. However, an incomplete understanding of how photoexcited charge carriers enhance sensitivity obstructs the rational design of high-performance sensors, impeding the practical utilization under commonly accessible light sources instead of ultraviolet or higher-energy sources. Here, a rational approach is presented to modulate the electronic properties of the parent metal oxide phase, exemplified by this model system of Bi-doped In2O3 nanofibers decorated with Au nanoparticles (NPs) that exhibit superior NO2 sensing performance. Bi doping introduces mid-gap energy levels into In2O3, promoting photoactivation even under visible blue light. Additionally, green-absorbing plasmonic Au NPs facilitate electron transfer across the heterojunction, extending the photoactive region toward the green light. It is revealed that the direct involvement of photogenerated charge carriers in gas adsorption and desorption processes is pivotal for enhancing gas sensing performance. Owing to the synergistic interplay between the Bi dopants and the Au NPs, the Au-BixIn2-xO3 (x = 0.04) sensing layers attain impressive response values (Rg/Ra = 104 at 0.6 ppm NO2) under green light illumination and demonstrate practical viability through evaluation under simulated mixed-light conditions, all of which significantly outperforms previously reported visible light-activated NO2 sensors.

13.
J Orthop Surg Res ; 18(1): 636, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644589

RESUMO

BACKGROUND: It is still uncertain whether diabetes mellitus (DM) is a risk factor for poor outcomes and increased complications after total ankle arthroplasty (TAA). The objective of this study was to compare clinical outcomes and complication rates of TAA in patients with and without DM. METHODS: This study enrolled patients with symptomatic end-stage ankle osteoarthritis with a minimum follow-up period of 24 months after TAA. A total of 252 patients (266 ankles) were classified into two groups according to the presence of DM: (1) DM group (59 patients, 67 ankles) and (2) non-DM group (193 patients, 199 ankles). We defined controlled diabetes as (1) HbA1c level < 7.0%, or (2) fasting glucose level < 130 mg/dL with HbA1c level ≥ 7.0% for hospitalization period. Clinical outcomes data (Ankle Osteoarthritis Scale, American Orthopedic Foot and Ankle Society ankle-hindfoot score, Short Form-36 Physical Component Summary score, and visual analog scale for pain) were compared preoperatively and at the final follow-up between the two groups. Complications following TAA were also compared between the two groups. RESULTS: All clinical variables had improved in both groups by the final follow-up (mean follow-up = 77.8 months). There was no significant difference in any clinical variable between the two groups at the final follow-up (P > 0.05). Of the 266 ankles, 73 ankles (19 in the DM group, 54 in the non-DM group) developed periprosthetic osteolysis. Although the DM group showed a higher prevalence of aseptic loosening or subsidence, the difference between the two groups was not statistically significant (P = 0.236). CONCLUSIONS: In the intermediate-term follow-up, TAA in patients with controlled DM showed clinical outcomes and complication rates comparable to patients without DM. Our results suggest that TAA can be done safely in diabetic patients if the DM is controlled in the perioperative period. LEVEL OF EVIDENCE: Therapeutic Level III.


Assuntos
Artroplastia de Substituição do Tornozelo , Diabetes Mellitus , Osteoartrite , Humanos , Tornozelo , Hemoglobinas Glicadas , Diabetes Mellitus/epidemiologia , Fatores de Risco , Artroplastia de Substituição do Tornozelo/efeitos adversos , Osteoartrite/etiologia , Osteoartrite/cirurgia
14.
Adv Mater ; 35(4): e2203370, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35738568

RESUMO

Metal oxides possessing distinctive physical/chemical properties due to different crystal structures and stoichiometries play a pivotal role in numerous current technologies, especially heterogeneous catalysis for production/conversion of high-valued chemicals and energy. To date, many researchers have investigated the effect of the structure and composition of these materials on their reactivity to various chemical and electrochemical reactions. However, metal oxide surfaces evolve from their initial form under dynamic reaction conditions due to the autonomous behaviors of the constituent atoms to adapt to the surrounding environment. Such nanoscale surface phenomena complicate reaction mechanisms and material properties, interrupting the clarification of the origin of functionality variations in reaction environments. In this review, the current findings on the spontaneous surface reorganization of metal oxides during reactions are categorized into three types: 1) the appearance of nano-sized second phase from oxides, 2) the (partial) encapsulation of oxide atoms toward supported metal surfaces, and 3) the oxide surface reconstruction with selective cation leaching in aqueous solution. Then their effects on each reaction are summarized in terms of activity and stability, providing novel insight for those who design metal-oxide-based catalytic materials.

15.
Adv Sci (Weinh) ; 10(5): e2204693, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509675

RESUMO

The combination of supported metal nanoparticles and functional host oxides catalyze many major industrial reactions. However, uniform dispersion and ideal chemical configuration of such nanoparticles, which determines the catalytic activity, are often difficult to achieve. In this study, a unique combination is proposed of heterogeneous doping and ex-solution for the fabrication of Pt-Ni alloy nanoparticles on CeO2 . By manipulating the reducing conditions, both the particle size and composition are precisely controlled, thereby achieving a highly dispersed and stable alloy nanocatalyst. The unique behavior of controlled alloy composition is elucidated through classical diffusion and precipitation kinetics with elemental analysis of the grain boundaries. Finally, Pt-Ni alloy nanocatalysts are successfully tuned showcasing a breakthrough performance compared to single element catalyst in reverse water gas shift reaction with superior stability and reproducibility.

16.
ACS Nano ; 17(13): 12188-12199, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37229643

RESUMO

The unorthodox surface chemistry of high-entropy alloy nanoparticles (HEA-NPs), with numerous interelemental synergies, helps catalyze a variety of essential chemical processes, such as the conversion of CO2 to CO, as a sustainable path to environmental remediation. However, the risk of agglomeration and phase separation in HEA-NPs during high-temperature operations are lasting issues that impede their practical viability. Herein, we present HEA-NP catalysts that are tightly sunk in an oxide overlayer for promoting the catalytic conversion of CO2 with exceptional stability and performance. We demonstrated the controlled formation of conformal oxide overlayers on carbon nanofiber surfaces via a simple sol-gel method, which facilitated a large uptake of metal precursor ions and helped to decrease the reaction temperature required for nanoparticle formation. During the rapid thermal shock synthesis process, the oxide overlayer would also impede nanoparticle growth, resulting in uniformly distributed small HEA-NPs (2.37 ± 0.78 nm). Moreover, these HEA-NPs were firmly socketed in the reducible oxide overlayer, enabling an ultrastable catalytic performance involving >50% CO2 conversion with >97% selectivity to CO for >300 h without extensive agglomeration. Altogether, we establish the rational design principles for the thermal shock synthesis of high-entropy alloy nanoparticles and offer a helpful mechanistic perspective on how the oxide overlayer impacts the nanoparticle synthesis behavior, providing a general platform for the designed synthesis of ultrastable and high-performance catalysts that could be utilized for various industrially and environmentally relevant chemical processes.

17.
ACS Nano ; 17(6): 5842-5851, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36916684

RESUMO

Ex-solution catalysts containing spontaneously formed metal nanoparticles socketed on the surface of reservoir oxides have recently been employed in various research fields including catalysis and sensing, due to the process efficiency and outstanding chemical/thermal stability. However, since the ex-solution process accompanies harsh reduction heat treatment, during which many oxides undergo phase decomposition, it restricts material selection and further advancement. Herein, we propose an elaborate design principle to uniformly functionalize ex-solution catalysts at porous oxide frameworks via an electrospinning process. As a case study, we selected the ex-solved La0.6Ca0.4Fe0.95Co0.05-xNixO3-δ (x = 0, 0.025 and 0.05) and SnO2 nanofibers as ex-solution hybrids and main frameworks, respectively. We confirmed superior dimethyl sulfide (C2H6S) gas sensing characteristics with excellent long-cycling stability. In particular, the high catalytic activities of ex-solved CoNiFe ternary nanoparticles, strongly socketed on reservoir oxide, accelerate the spillover process of O2 to dramatically enhance the response toward sulfuric analytes with exceptional tolerance. Altogether, our contribution represents an important stepping-stone to a rational design of ex-solved particle-reservoir oxide hybrids functionalized on porous oxide scaffolds for a variety of applications.

18.
Nat Commun ; 14(1): 4173, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443162

RESUMO

Deformable semi-solid liquid metal particles (LMP) have emerged as a promising substitute for rigid conductive fillers due to their excellent electrical properties and stable conductance under strain. However, achieving a compact and robust coating of LMP on fibers remains a persistent challenge, mainly due to the incompatibility of conventional coating techniques with LMP. Additionally, the limited durability and absence of initial electrical conductivity of LMP restrict their widespread application. In this study, we propose a solution process that robustly and compactly assembles mechanically durable and initially conductive LMP on fibers. Specifically, we present a shearing-based deposition of polymer-attached LMP followed by additional coating with CNT-attached LMP to create bi-layer LMP composite with exceptional durability, electrical conductivity, stretchability, and biocompatibility on various fibers. The versatility and reliability of this manufacturing strategy for 1D electronics are demonstrated through the development of sewn electrical circuits, smart clothes, stretchable biointerfaced fiber, and multifunctional fiber probes.


Assuntos
Dispositivos Eletrônicos Vestíveis , Têxteis , Reprodutibilidade dos Testes , Polímeros , Metais
19.
Nat Mater ; 11(2): 155-61, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138788

RESUMO

Fuel cells, and in particular solid-oxide fuel cells (SOFCs), enable high-efficiency conversion of chemical fuels into useful electrical energy and, as such, are expected to play a major role in a sustainable-energy future. A key step in the fuel-cell energy-conversion process is the electro-oxidation of the fuel at the anode. There has been increasing evidence in recent years that the presence of CeO(2)-based oxides (ceria) in the anodes of SOFCs with oxygen-ion-conducting electrolytes significantly lowers the activation overpotential for hydrogen oxidation. Most of these studies, however, employ porous, composite electrode structures with ill-defined geometry and uncontrolled interfacial properties. Accordingly, the means by which electrocatalysis is enhanced has remained unclear. Here we demonstrate unambiguously, through the use of ceria-metal structures with well-defined geometries and interfaces, that the near-equilibrium H(2) oxidation reaction pathway is dominated by electrocatalysis at the oxide/gas interface with minimal contributions from the oxide/metal/gas triple-phase boundaries, even for structures with reaction-site densities approaching those of commercial SOFCs. This insight points towards ceria nanostructuring as a route to enhanced activity, rather than the traditional paradigm of metal-catalyst nanostructuring.

20.
Ann Occup Environ Med ; 34: e32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452247

RESUMO

Background: This study was conducted to examine the relationship between chronotype and depressive symptoms to provide grounded knowledge in establishing nurses' health promotion strategies. Methods: The subjects of this study were 493 newly hired nurses working in 2 general hospitals within the university from September 2018 to September 2020. Sociodemographic and work-related characteristics were collected from a medical examination database and a self-reported questionnaire. These included sex, age, marital status, living situation, education level, alcohol consumption, physical activity, prior work experience before 3 months, workplace, and departments. To analyze the associations between the chronotype and depressive symptoms, multiple logistic regression analyses were performed to calculate odds ratios (ORs). Results: Among participants, 9.1% had depressive symptoms and 16.4% had insomnia. The subjects are divided into morningness (30.2%), intermediate (48.7%), and eveningness (21.1%). The multiple logistic regression analysis controlling for age, living status, education level, alcohol consumption, physical activity, workplace, prior work experience before 3 months, and insomnia, revealed that the OR of depressive symptoms in the eveningness group was 3.71 (95% confidence interval [CI]: 1.50-9.18) compared to the morningness group, and the R2 value was 0.151. It also can be confirmed that insomnia symptoms have a statistically significant effect on depressive symptoms (OR: 2.16, 95% CI: 1.03-4.52). Conclusions: Our findings suggest that evening-type nurses are more likely to have depression than morning-type nurses. We should consider interventions in a high-risk group such as the evening type nurses to reduce depressive symptoms in nurses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA