Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995013

RESUMO

Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.


Assuntos
Proliferação de Células , Mioblastos , Transdução de Sinais , Fator de Necrose Tumoral alfa , Mioblastos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular , Quimiocinas/metabolismo , Quimiocinas/genética , Citocinas/metabolismo , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Front Immunol ; 11: 2191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072083

RESUMO

Pararamosis is a disease that occurs due to contact with the hairs of the larval stage of the Brazilian moth Premolis semirufa. Envenomation induces osteoarticular alterations with cartilage impairment that resembles joint synovitis. Thus, the toxic venom present in the caterpillar hairs interferes with the phenotype of the cells present in the joints, resulting in inflammation and promoting tissue injury. Therefore, to address the inflammatory mechanisms triggered by envenomation, we studied the effects of P. semirufa hair extract on human chondrocytes. We have selected for the investigation, cytokines, chemokines, matrix metalloproteinases (MMPs), complement components, eicosanoids, and extracellular matrix (ECM) components related to OA and RA. In addition, for measuring protein-coding mRNAs of some molecules associated with osteoarthritis (OA) and rheumatoid arthritis (RA), reverse transcription (RT) was performed followed by quantitative real-time PCR (RT-qPCR) and we performed the RNA-sequencing (RNA-seq) analysis of the chondrocytes transcriptome. In the supernatant of cell cultures treated with the extract, we observed increased IL-6, IL-8, MCP-1, prostaglandin E2, metalloproteinases (MMP-1, MMP-2, MMP-3 and MMP-13), and complement system components (C3, C4, and C5). We noticed a significant decrease in both aggrecan and type II collagen and an increase in HMGB1 protein in chondrocytes after extract treatment. RNA-seq analysis of the chondrocyte transcriptome allowed us to identify important pathways related to the inflammatory process of the disease, such as the inflammatory response, chemotaxis of immune cells and extracellular matrix (ECM) remodeling. Thus, these results suggest that components of Premolis semirufa hair have strong inflammatory potential and are able to induce cartilage degradation and ECM remodeling, promoting a disease with an osteoarthritis signature. Modulation of the signaling pathways that were identified as being involved in this pathology may be a promising approach to develop new therapeutic strategies for the control of pararamosis and other inflammatory joint diseases.


Assuntos
Cartilagem/patologia , Condrócitos/fisiologia , Inflamação/imunologia , Artropatias/imunologia , Osteoartrite/genética , Animais , Venenos de Artrópodes/metabolismo , Células Cultivadas , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Artropatias/induzido quimicamente , Mariposas/metabolismo , Floresta Úmida , Transdução de Sinais
3.
PLoS One ; 13(3): e0193739, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561852

RESUMO

BACKGROUND: Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. RESULTS: The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. CONCLUSION: The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species.


Assuntos
Regulação da Expressão Gênica , Proteoma/metabolismo , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Escorpiões/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Filogenia , Proteômica , Escorpiões/classificação , Escorpiões/genética , Homologia de Sequência , Especificidade da Espécie
4.
Genome Biol Evol ; 8(8): 2266-87, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27412610

RESUMO

Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution.


Assuntos
Colubridae/genética , Evolução Molecular , Venenos de Serpentes/genética , Animais , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lipase/genética , Lipase/metabolismo , Proteoma/genética , Proteoma/metabolismo , Venenos de Serpentes/metabolismo , Transcriptoma
5.
Toxins (Basel) ; 8(12)2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27886129

RESUMO

The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension.


Assuntos
Peptídeo Hidrolases/metabolismo , Peptidil Dipeptidase A/metabolismo , Venenos de Escorpião/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antivenenos/farmacologia , Captopril/farmacologia , Cloretos/farmacologia , Hipertensão/metabolismo , Escorpiões
6.
Toxicon ; 95: 52-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25553591

RESUMO

Scorpion venom is a mixture of peptides, including antimicrobial, bradykinin-potentiating and anionic peptides and small to medium proteins, such as ion channel toxins, metalloproteinases and phospholipases that together cause severe clinical manifestation. Tityus bahiensis is the second most medically important scorpion species in Brazil and it is widely distributed in the country with the exception of the North Region. Here we sequenced and analyzed the transcripts from the venom glands of T. bahiensis, aiming at identifying and annotating venom gland expressed genes. A total of 116,027 long reads were generated by pyrosequencing and assembled in 2891 isotigs. An annotation process identified transcripts by similarity to known toxins, revealing that putative venom components represent 7.4% of gene expression. The major toxins identified are potassium and sodium channel toxins, whereas metalloproteinases showed an unexpected high abundance. Phylogenetic analysis of deduced metalloproteinases from T. bahiensis and other scorpions revealed a pattern of ancient and intraspecific gene expansions. Other venom molecules identified include antimicrobial, anionic and bradykinin-potentiating peptides, besides several putative new venom components. This report provides the first attempt to massively identify the venom components of this species and constitutes one of the few transcriptomic efforts on the genus Tityus.


Assuntos
Venenos de Escorpião/química , Escorpiões/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Brasil , Biologia Computacional , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Biblioteca Gênica , Metaloproteases/genética , Metaloproteases/metabolismo , Dados de Sequência Molecular , Filogenia , Canais de Potássio/toxicidade , Alinhamento de Sequência , Análise de Sequência de DNA , Canais de Sódio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA