RESUMO
BACKGROUND: Heart failure (HF) is a burgeoning health problem worldwide. Often arising as a result of cardiac injury, HF has become a major cause of mortality with limited availability of effective treatments. Ferroptotic pathways, triggering an iron-dependent form of cell death, are known to be potential key players in heart disease. This form of cell death does not exhibit typical characteristics of programmed cell death, and is mediated by impaired iron metabolism and lipid peroxidation signalling. OBJECTIVES: The aim of this study is to establish an ex-vivo model of myocardial injury in living myocardial slices (LMS) and to identify novel underlying mechanisms and potential therapeutic druggable target(s). METHODS AND RESULTS: In this study, we employed LMS as an ex vivo model of cardiac injury to investigate underlying mechanisms and potential therapeutic targets. Cryoinjury was induced in adult rat LMS, resulting in 30 % tissue damage. Cryoinjured LMS demonstrated impaired contractile function, cardiomyocyte hypertrophy, inflammation, and cardiac fibrosis, closely resembling in vivo cardiac injury characteristics. Proteomic analysis revealed an enrichment of factors associated with ferroptosis in the injured LMS, suggesting a potential causative role. To test this hypothesis, we pharmacologically inhibited ferroptotic pathways using ferrostatin (Fer-1) in the cryoinjured rat LMS, resulting in attenuation of structural changes and repression of pro-fibrotic processes. Furthermore, LMS generated from failing human hearts were used as a model of chronic heart failure. In this model, Fer-1 treatment was observed to reduce the expression of ferroptotic genes, enhances contractile function and improves tissue viability. Blocking ferroptosis-associated pathways in human cardiac fibroblasts (HCFs) resulted in a downregulation of fibroblast activation genes, a decrease in fibroblast migration capacity, and a reduction in reactive oxygen species production. RNA sequencing analysis of Fer-1-treated human LMS implicated metallothioneins as a potential underlying mechanism for the inhibition of these pathways. This effect is possibly mediated through the replenishment of glutathione reserves. CONCLUSIONS: Our findings highlight the potential of targeting ferroptosis-related pathways and metallothioneins as a promising strategy for the treatment of heart disease.
Assuntos
Modelos Animais de Doenças , Ferroptose , Pesquisa Translacional Biomédica , Ferroptose/efeitos dos fármacos , Animais , Ratos , Masculino , Transdução de Sinais/efeitos dos fármacos , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Proteômica/métodos , Cicloexilaminas/farmacologia , Ferro/metabolismo , Ratos Sprague-Dawley , Fenilenodiaminas/farmacologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologiaRESUMO
BACKGROUND: Myocardial fibrosis is a hallmark of the failing heart, contributing to the most common causes of deaths worldwide. Several microRNAs (miRNAs, miRs) controlling cardiac fibrosis were identified in recent years; however, a more global approach to identify miRNAs involved in fibrosis is missing. METHODS AND RESULTS: Functional miRNA mimic library screens were applied in human cardiac fibroblasts (HCFs) to identify annotated miRNAs inducing proliferation. In parallel, miRNA deep sequencing was performed after subjecting HCFs to proliferating and resting stimuli, additionally enabling discovery of novel miRNAs. In-depth in vitro analysis confirmed the pro-fibrotic nature of selected, highly conserved miRNAs miR-20a-5p and miR-132-3p. To determine downstream cellular pathways and their role in the fibrotic response, targets of the annotated miRNA candidates were modulated by synthetic siRNA. We here provide evidence that repression of autophagy and detoxification of reactive oxygen species by miR-20a-5p and miR-132-3p explain some of their pro-fibrotic nature on a mechanistic level. CONCLUSION: We here identified both miR-20a-5p and miR-132-3p as crucial regulators of fibrotic pathways in an in vitro model of human cardiac fibroblast biology.
Assuntos
Fibroblastos/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Miocárdio/citologia , Análise de Sequência de RNA , Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Sequência de Bases , Fibrose , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Humanos , Inativação Metabólica/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismoRESUMO
BACKGROUND: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis. METHODS: Antifibrotic drug candidates were identified by functional screening of 480 chemically diverse natural compounds in primary human cardiac fibroblasts, subsequent validation, and mechanistic in vitro and in vivo studies. Hits were analyzed for dose-dependent inhibition of proliferation of human cardiac fibroblasts, modulation of apoptosis, and extracellular matrix expression. In vitro findings were confirmed in vivo with an angiotensin II-mediated murine model of cardiac fibrosis in both preventive and therapeutic settings, as well as in the Dahl salt-sensitive rat model. To investigate the mechanism underlying the antifibrotic potential of the lead compounds, treatment-dependent changes in the noncoding RNAome in primary human cardiac fibroblasts were analyzed by RNA deep sequencing. RESULTS: High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds. CONCLUSIONS: We identified the molecules bufalin and lycorine as drug candidates for therapeutic applications in cardiac fibrosis and diastolic dysfunction.
Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Bufanolídeos/farmacologia , Cardiomiopatias/prevenção & controle , Fármacos Cardiovasculares/farmacologia , Fibroblastos/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diástole , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Ensaios de Triagem em Larga Escala , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Endogâmicos Dahl , Selenoproteína P/genética , Selenoproteína P/metabolismo , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
Myocardial ischemia induces a multifaceted remodeling process in the heart. Novel therapeutic entry points to counteract maladaptive signalling include the modulation of non-coding RNA molecules such as long non-coding RNA (lncRNA). We here questioned if the lncRNA candidate H19 exhibits regulatory potential in the setting of myocardial infarction. Initial profiling of H19 expression revealed a dynamic expression profile of H19 with upregulation in the acute phase after murine cardiac ischemia. In vitro, we found that oxygen deficiency leads to H19 upregulation in several cardiac cell types. Repression of endogenous H19 caused multiple phenotypes in cultivated murine cardiomyocytes including enhanced cardiomyocyte apoptosis, at least partly through attenuated vitamin D signalling. Unbiased proteome analysis revealed further involvement of H19 in mRNA splicing and translation as well as inflammatory signalling pathways. To study H19 function more precisely, we investigated the phenotype of systemic H19 loss in a genetic mouse model of H19 deletion (H19 KO). Infarcted heart tissue of H19 KO mice showed a massive increase of pro-inflammatory cytokines after ischemia-reperfusion injury (I/R) without significant effects on scar formation or cardiac function but exaggerated cardiac hypertrophy indicating pathological cardiac remodeling. H19-dependent changes in cardiomyocyte-derived extracellular vesicle release and alterations in NF-κB signalling were evident. Cardiac cell fractionation experiments revealed that enhanced H19 expression in the proliferative phase after MI derived mainly from cardiac fibroblasts. Here further research is needed to elucidate its role in fibroblast activation and function. In conclusion, the lncRNA H19 is dynamically regulated after MI and involved in multiple pathways of different cardiac cell types including cardiomyocyte apoptosis and cardiac inflammation.
Assuntos
Pleiotropia Genética , Coração/fisiopatologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatologia , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Oxigênio , Proteoma/metabolismo , RNA Longo não Codificante/genética , Receptores de Calcitriol/metabolismo , Remodelação Vascular/genéticaRESUMO
Marathon running is an extreme physical activity, which determines cardiopulmonary adaption of athletes. Circular RNAs (circRNAs) as potential biomarkers in the blood stream have so far not been tested after such strenuous activities. In silico approaches were performed to identify the potential candidate circRNA MBOAT2. Next, we demonstrated high stability and conservation of circRNA MBOAT2 as well as its abundancy in human plasma. In addition to Sanger sequencing of the circRNA specific head-to-tail junction, or back-splice site, we established a synthetic plasmid standard which allowed exact copy number calculations of circRNA MBOAT2. We then analyzed plasmatic circRNA MBOAT2 and observed a significantly lower level 24 h after the marathon. Such alterations were correlated to physical exercise parameters confirming the role of circRNA MBOAT2 as a promising noncoding RNA biomarker detecting cardiopulmonary adaption.NEW & NOTEWORTHY In brief, we herein report a timeline of circulating circular RNA (circRNA) MBOAT2 in a cohort of marathon runners. Time-course analysis of plasmatic circRNA MBOAT2 demonstrated a significantly lowered level 24 h after the marathon. Abundancy of circRNA was correlated to physical exercise parameters highlighting the role of circRNA MBOAT2 as a valuable noncoding RNA biomarker detecting and following up cardiopulmonary adaption.
Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Ácidos Nucleicos Livres/sangue , Treino Aeróbico/métodos , RNA Circular/sangue , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adaptação Fisiológica , Adulto , Biomarcadores/sangue , Aptidão Cardiorrespiratória , Humanos , Masculino , Pessoa de Meia-Idade , Estabilidade de RNARESUMO
BACKGROUND: Deficient autophagy has been recently implicated as a driver of pulmonary fibrosis, yet bioinformatics approaches to study this cellular process are lacking. Autophagy-related 5 and 7 (ATG5/ATG7) are critical elements of macro-autophagy. However, an alternative ATG5/ATG7-independent macro-autophagy pathway was recently discovered, its regulation being unknown. Using a bioinformatics proteome profiling analysis of ATG7-deficient human fibroblasts, we aimed to identify key microRNA (miR) regulators in autophagy. METHOD: We have generated ATG7-knockout MRC-5 fibroblasts and performed mass spectrometry to generate a large-scale proteomics dataset. We further quantified the interactions between various proteins combining bioinformatics molecular network reconstruction and functional enrichment analysis. The predicted key regulatory miRs were validated via quantitative polymerase chain reaction. RESULTS: The functional enrichment analysis of the 26 deregulated proteins showed decreased cellular trafficking, increased mitophagy and senescence as the major overarching processes in ATG7-deficient lung fibroblasts. The 26 proteins reconstitute a protein interactome of 46 nodes and miR-regulated interactome of 834 nodes. The miR network shows three functional cluster modules around miR-16-5p, miR-17-5p and let-7a related to multiple deregulated proteins. Confirming these results in a biological setting, serially passaged wild-type and autophagy-deficient fibroblasts displayed senescence-dependent expression profiles of miR-16-5p and miR-17-5p. CONCLUSIONS: We have developed a bioinformatics proteome profiling approach that successfully identifies biologically relevant miR regulators from a proteomics dataset of the ATG-7-deficient milieu in lung fibroblasts, and thus may be used to elucidate key molecular players in complex fibrotic pathological processes. The approach is not limited to a specific cell-type and disease, thus highlighting its high relevance in proteome and non-coding RNA research.
Assuntos
Proteína 7 Relacionada à Autofagia/genética , Fibroblastos/fisiologia , MicroRNAs/genética , Autofagossomos/genética , Autofagossomos/fisiologia , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Células Cultivadas , Senescência Celular , Biologia Computacional , Células Endoteliais/metabolismo , Fibroblastos/patologia , Técnicas de Inativação de Genes , Humanos , Proteínas Associadas aos Microtúbulos/metabolismoRESUMO
Integrative bioinformatics is an emerging field in the big data era, offering a steadily increasing number of algorithms and analysis tools. However, for researchers in experimental life sciences it is often difficult to follow and properly apply the bioinformatical methods in order to unravel the complexity and systemic effects of omics data. Here, we present an integrative bioinformatics pipeline to decipher crucial biological insights from global transcriptome profiling data to validate innovative therapeutics. It is available as a web application for an interactive and simplified analysis without the need for programming skills or deep bioinformatics background. The approach was applied to an ex vivo cardiac model treated with natural anti-fibrotic compounds and we obtained new mechanistic insights into their anti-fibrotic action and molecular interplay with miRNAs in cardiac fibrosis. Several gene pathways associated with proliferation, extracellular matrix processes and wound healing were altered, and we could identify micro (mi) RNA-21-5p and miRNA-223-3p as key molecular components related to the anti-fibrotic treatment. Importantly, our pipeline is not restricted to a specific cell type or disease and can be broadly applied to better understand the unprecedented level of complexity in big data research.
Assuntos
Biologia Computacional/métodos , Fibrose/genética , Perfilação da Expressão Gênica/métodos , Fibrose/fisiopatologia , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma/genética , Fluxo de TrabalhoRESUMO
BACKGROUND: The transcription factor GATA2 orchestrates the expression of many endothelial-specific genes, illustrating its crucial importance for endothelial cell function. The capacity of this transcription factor in orchestrating endothelial-important microRNAs (miRNAs/miR) is unknown. METHODS: Endothelial GATA2 was functionally analyzed in human endothelial cells in vitro. Endogenous short interfering RNA-mediated knockdown and lentiviral-based overexpression were applied to decipher the capacity of GATA2 in regulating cell viability and capillary formation. Next, the GATA2-dependent miR transcriptome was identified by using a profiling approach on the basis of quantitative real-time polymerase chain reaction. Transcriptional control of miR promoters was assessed via chromatin immunoprecipitation, luciferase promoter assays, and bisulfite sequencing analysis of sites in proximity. Selected miRs were modulated in combination with GATA2 to identify signaling pathways at the angiogenic cytokine level via proteome profiler and enzyme-linked immunosorbent assays. Downstream miR targets were identified via bioinformatic target prediction and luciferase reporter gene assays. In vitro findings were translated to a mouse model of carotid injury in an endothelial GATA2 knockout background. Nanoparticle-mediated delivery of proangiogenic miR-126 was tested in the reendothelialization model. RESULTS: GATA2 gain- and loss-of-function experiments in human umbilical vein endothelial cells identified a key role of GATA2 as master regulator of multiple endothelial functions via miRNA-dependent mechanisms. Global miRNAnome-screening identified several GATA2-regulated miRNAs including miR-126 and miR-221. Specifically, proangiogenic miR-126 was regulated by GATA2 transcriptionally and targeted antiangiogenic SPRED1 and FOXO3a contributing to GATA2-mediated formation of normal vascular structures, whereas GATA2 deficiency led to vascular abnormalities. In contrast to GATA2 deficiency, supplementation with miR-126 normalized vascular function and expression profiles of cytokines contributing to proangiogenic paracrine effects. GATA2 silencing resulted in endothelial DNA hypomethylation leading to induced expression of antiangiogenic miR-221 by GATA2-dependent demethylation of a putative CpG island in the miR-221 promoter. Mechanistically, a reverted GATA2 phenotype by endogenous suppression of miR-221 was mediated through direct proangiogenic miR-221 target genes ICAM1 and ETS1. In a mouse model of carotid injury, GATA2 was reduced, and systemic supplementation of miR-126-coupled nanoparticles enhanced miR-126 availability in the carotid artery and improved reendothelialization of injured carotid arteries in vivo. CONCLUSIONS: GATA2-mediated regulation of miR-126 and miR-221 has an important impact on endothelial biology. Hence, modulation of GATA2 and its targets miR-126 and miR-221 is a promising therapeutic strategy for treatment of many vascular diseases.
Assuntos
Doenças das Artérias Carótidas/terapia , Fator de Transcrição GATA2/metabolismo , MicroRNAs/uso terapêutico , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antagomirs/metabolismo , Sequência de Bases , Doenças das Artérias Carótidas/patologia , Modelos Animais de Doenças , Proteína Forkhead Box O3/antagonistas & inibidores , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fator de Transcrição GATA2/antagonistas & inibidores , Fator de Transcrição GATA2/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lentivirus/genética , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Nanopartículas/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Alinhamento de SequênciaRESUMO
Beneficial effects of sodium glucose co-transporter 2 inhibitors (SGLT2is) in cardiovascular diseases have been extensively reported leading to the inclusion of these drugs in the treatment guidelines for heart failure. However, molecular actions especially on non-myocyte cells remain uncertain. We observed dose-dependent inhibitory effects of two SGLT2is, dapagliflozin (DAPA) and empagliflozin (EMPA), on inflammatory signaling in human umbilical vein endothelial cells. Proteomic analyses and subsequent enrichment analyses discovered profound effects of these SGLT2is on proteins involved in mitochondrial respiration and actin cytoskeleton. Validation in functional oxygen consumption measurements as well as tube formation and migration assays revealed strong impacts of DAPA. Considering that most influenced parameters played central roles in endothelial to mesenchymal transition (EndMT), we performed in vitro EndMT assays and identified substantial reduction of mesenchymal and fibrosis marker expression as well as changes in cellular morphology upon treatment with SGLT2is. In line, human cardiac fibroblasts exposed to DAPA showed less proliferation, reduced ATP production, and decelerated migration capacity while less extensive impacts were observed upon EMPA. Mechanistically, sodium proton exchanger 1 (NHE1) as well as sodium-myoinositol cotransporter (SMIT) and sodium-multivitamin cotransporter (SMVT) could be identified as relevant targets of SGLT2is in non-myocyte cardiovascular cells as validated by individual siRNA-knockdown experiments. In summary, we found comprehensive beneficial effects of SGLT2is on human endothelial cells and cardiac fibroblasts. The results of this study therefore support a distinct effect of selected SGLT2i on non-myocyte cardiovascular cells and grant further insights into potential molecular mode of action of these drugs.
Assuntos
Compostos Benzidrílicos , Fibroblastos , Glucosídeos , Células Endoteliais da Veia Umbilical Humana , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
Background: Constant supply of oxygen is crucial for multicellular tissue homeostasis and energy metabolism in cardiac tissue. As a first response to acute hypoxia, endothelial cells (ECs) promote recruitment and adherence of immune cells to the dysbalanced EC barrier by releasing inflammatory mediators and growth factors, whereas chronic hypoxia leads to the activation of a transcription factor (TF) battery, that potently induces expression of growth factors and cytokines including platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). We report a hypoxia-minded, targeted bioinformatics approach aiming to identify and validate TFs that regulate angiogenic signaling. Results: A comprehensive RNA-Seq dataset derived from human ECs subjected to normoxic or hypoxic conditions was selected to identify significantly regulated genes based on (i) fold change (normoxia vs. hypoxia) and (ii) relative abundancy. Transcriptional regulation of this gene set was confirmed via qPCR in validation experiments where HUVECs were subjected to hypoxic conditions for 24 h. Screening the promoter and upstream regulatory elements of these genes identified two TFs, KLF5 and SP1, both with a potential binding site within these regions of selected target genes. In vitro, siRNA experiments confirmed SP1- and KLF5-mediated regulation of identified hypoxia-sensitive endothelial genes. Next to angiogenic signaling, we also validated the impact of TFs on inflammatory signaling, both key events in hypoxic sensing. Both TFs impacted on inflammatory signaling since endogenous repression led to increased NF-κB signaling. Additionally, SP1 silencing eventuated decreased angiogenic properties in terms of proliferation and tube formation. Conclusion: By detailed in silico analysis of promoter region and upstream regulatory elements for a list of hypoxia-sensitive genes, our bioinformatics approach identified putative binding sites for TFs of SP or KLF family in vitro. This strategy helped to identify TFs functionally involved in human angiogenic signaling and therefore serves as a base for identifying novel RNA-based drug entities in a therapeutic setting of vascularization.
RESUMO
Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary heart diseases and can be classified into an obstructive (HOCM) and non-obstructive (HNCM) form. Major characteristics for HCM are the hypertrophy of cardiomyocytes and development of cardiac fibrosis. Patients with HCM have a higher risk for sudden cardiac death compared to a healthy population. In the present study, we investigated the abundancy of selected proteins as potential biomarkers in patients with HCM. We included 60 patients with HCM and 28 healthy controls and quantitatively measured the rate of a set of 92 proteins already known to be associated with cardiometabolic processes via protein screening using the proximity extension assay technology in a subgroup of these patients (20 HCM and 10 healthy controls). After validation of four hits in the whole cohort of patients consisting of 88 individuals (60 HCM patients, 28 healthy controls) we found only one candidate, c-KIT, which was regulated significantly different between HCM patients and healthy controls and thus was chosen for further analyses. c-KIT is a tyrosine-protein kinase acting as receptor for the stem cell factor and activating several pathways essential for cell proliferation and survival, hematopoiesis, gametogenesis and melanogenesis. Serum protein levels of c-KIT were significantly lower in patients with HCM than in healthy controls, even after adjusting for confounding factors age and sex. In addition, c-KIT levels in human cardiac tissue of patients with HOCM were significant higher compared to controls indicating high levels of c-KIT in fibrotic myocardium. Furthermore, c-KIT concentration in serum significantly correlated with left ventricular end-diastolic diameter in HOCM, but not HCM patients. The present data suggest c-KIT as a novel biomarker differentiating between patients with HCM and healthy population and might provide further functional insights into fibrosis-related processes of HOCM.
Assuntos
Cardiomiopatia Hipertrófica/sangue , Cardiomiopatia Hipertrófica/diagnóstico , Proteínas Proto-Oncogênicas c-kit/sangue , Adulto , Idoso , Biomarcadores/sangue , Ecocardiografia , Feminino , Fibrose/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/patologiaRESUMO
The family of RNA-binding proteins (RBP) functions as a crucial regulator of multiple biological processes and diseases. However, RBP function in the clinical setting of idiopathic pulmonary fibrosis (IPF) is still unknown. We developed a practical in silico screening approach for the characterization of RBPs using multi-sources data information and comparative molecular network bioinformatics followed by wet-lab validation studies. Data mining of bulk RNA-Sequencing data of tissues of patients with IPF identified Quaking (QKI) as a significant downregulated RBP. Cell-type specific expression was confirmed by single-cell RNA-Sequencing analysis of IPF patient data. We systematically analyzed the molecular interaction network around QKI and its functional interplay with microRNAs (miRs) in human lung fibroblasts and discovered a novel regulatory miR-506-QKI axis contributing to the pathogenesis of IPF. The in silico results were validated by in-house experiments applying model systems of miR and lung biology. This study supports an understanding of the intrinsic molecular mechanisms of IPF regulated by the miR-506-QKI axis. Initially applied to human lung disease, the herein presented integrative in silico data mining approach can be adapted to other disease entities, underlining its practical relevance in RBP research.
Assuntos
Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Estudos de Casos e Controles , Células Cultivadas , Biologia Computacional , Conjuntos de Dados como Assunto , Fibroblastos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/citologia , Cultura Primária de Células , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Célula ÚnicaRESUMO
The senescence of vascular smooth muscle cells (VSMCs) has been implicated as a causal pro-inflammatory mechanism for cardiovascular disease development and progression of atherosclerosis, the instigator of ischemic heart disease. Contemporary limitations related to studying this cellular population and senescence-related therapeutics are caused by a lack of specific markers enabling their detection. Therefore, we aimed to profile a phenotypical and molecular signature of senescent VSMCs to allow reliable identification. To achieve this goal, we have compared non-senescent and senescent VSMCs from two in vitro models of senescence, replicative senescence (RS) and DNA-damage induced senescence (DS), by analyzing the expressions of established senescence markers: cell cycle inhibitors- p16 INK4a, p14 ARF, p21 and p53; pro-inflammatory factors-Interleukin 1ß (IL-1ß), IL-6 and high mobility group box-1 (HMGB-1); contractile proteins-smooth muscle heavy chain- (MYH11), smoothelin and transgelin (TAGLN), as well as structural features (nuclear morphology and LMNB1 (Lamin B1) expression). The different senescence-inducing modalities resulted in a lack of the proliferative activity. Nucleomegaly was seen in senescent VSMC as compared to freshly isolated VSMC Phenotypically, senescent VSMC appeared with a significantly larger cell size and polygonal, non-spindle-shaped cell morphology. In line with the supposed switch to a pro-inflammatory phenotype known as the senescence associated secretory phenotype (SASP), we found that both RS and DS upregulated IL-1ß and released HMGB-1 from the nucleus, while RS also showed IL-6 upregulation. In regard to cell cycle-regulating molecules, we detected modestly increased p16 levels in both RS and DS, but largely inconsistent p21, p14ARF, and p53 expressions in senescent VSMCs. Since these classical markers of senescence showed insufficient deregulation to warrant senescent VSMC detection, we have conducted a non-biased proteomics and in silico analysis of RS VSMC demonstrating altered RNA biology as the central molecular feature of senescence in this cell type. Therefore, key proteins involved with RNA functionality, HMGB-1 release, LMNB-1 downregulation, in junction with nuclear enlargement, can be used as markers of VSMC senescence, enabling the detection of these pathogenic pro-inflammatory cells in future therapeutic studies in ischemic heart disease and atherosclerosis.
RESUMO
AIMS: Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury. METHODS AND RESULTS: Left common carotid arteries of C57BL/6 mice were electrically denudated and endothelial regeneration was evaluated. Profiling of RNA-binding proteins revealed dysregulated expression of Rbm38 in the denudated and regenerated areas. We next tested the importance of Rbm38 in human umbilical vein endothelial cells (HUVECS) and analysed its effects on cellular proliferation, migration and apoptosis. Rbm38 silencing in vitro demonstrated important beneficial functional effects on migratory capacity and proliferation of endothelial cells. In vivo, local silencing of Rbm38 also improved re-endothelialization of denuded carotid arteries. Luciferase reporter assay identified miR-98 and let-7f to regulate Rbm38 and the positive proliferative properties of Rbm38 silencing in vitro and in vivo were mimicked by therapeutic overexpression of these miRNAs. CONCLUSION: The present data identified Rbm38 as an important factor of the regulation of various endothelial cell functions. Local inhibition of Rbm38 as well as overexpression of the upstream regulators miR-98 and let-7f improved endothelial regeneration in vivo and thus may be a novel therapeutic entry point to avoid endothelial damage after balloon angioplasty.
Assuntos
Lesões das Artérias Carótidas/terapia , Proliferação de Células , Células Endoteliais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reepitelização , Regiões 3' não Traduzidas , Animais , Apoptose , Sítios de Ligação , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Movimento Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fatores de TempoRESUMO
Calcification of aortic valves leads to aortic stenosis mainly in elderly individuals, but the underlying molecular mechanisms are still not understood. Here, we studied microRNA (miR, miRNA) expression and function in healthy and stenotic human aortic valves. We identified miR-21, miR-24, and miR-143 to be highly upregulated in stenotic aortic valves. Using luciferase reporter systems, we found direct binding of miR-143 to the 3'UTR region of the matrix gla protein (MGP), which in turn is a key factor to sustain homeostasis in aortic valves. In subsequent experiments, we demonstrated a therapeutic potential of miRNA regulation during calcification in cardiac valvular interstitial cells. Collectively, our data provide evidence that deregulated miR expression contributes to the development of stenotic valve disease and thus form novel therapeutic opportunities of this severe cardiovascular disease.
Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Idoso , Idoso de 80 Anos ou mais , Animais , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Sítios de Ligação , Calcinose/genética , Calcinose/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/genética , Osteogênese , Transdução de Sinais , Sus scrofa , Regulação para Cima , Proteína de Matriz GlaRESUMO
Long non-coding RNAs (lncRNAs) have potential as novel therapeutic targets in cardiovascular diseases, but detailed information about the intercellular lncRNA shuttling mechanisms in the heart is lacking. Here, we report an important novel crosstalk between cardiomyocytes and fibroblasts mediated by the transfer of lncRNA-enriched extracellular vesicles (EVs) in the context of cardiac ischemia. lncRNA profiling identified two hypoxia-sensitive lncRNAs: ENSMUST00000122745 was predominantly found in small EVs, whereas lncRNA Neat1 was enriched in large EVs in vitro and in vivo. Vesicles were taken up by fibroblasts, triggering expression of profibrotic genes. In addition, lncRNA Neat1 was transcriptionally regulated by P53 under basal conditions and by HIF2A during hypoxia. The function of Neat1 was further elucidated in vitro and in vivo. Silencing of Neat1 in vitro revealed that Neat1 was indispensable for fibroblast and cardiomyocyte survival and affected fibroblast functions (reduced migration capacity, stalled cell cycle, and decreased expression of fibrotic genes). Of translational importance, genetic loss of Neat1 in vivo resulted in an impaired heart function after myocardial infarction highlighting its translational relevance.
RESUMO
Pluripotent stem cells hold great promise for regenerative medicine since they can differentiate into all somatic cells. MicroRNAs (miRNAs) could be important for the regulation of these cell-fate decisions. Profiling of miRNAs revealed 19 differentially expressed miRNAs in the endoderm and 29 in the mesoderm when analyzing FACS-purified cells derived from human embryonic stem cells. The mesodermal-enriched miR-483-3p was identified as an important regulator for the generation of mesodermal PDGFRA+ paraxial cells. Repression of its target PGAM1 significantly increased the number of PDGFRA+ cells. Furthermore, miR-483-3p, miR-199a-3p, and miR-214-3p might also have functions for the mesodermal progenitors. The endoderm-specific miR-489-3p and miR-1263 accelerated and increased endoderm differentiation upon overexpression. KLF4 was identified as a target of miR-1263. RNAi-mediated downregulation of KLF4 partially mimicked miR-1263 overexpression. Thus, the effects of this miRNA were mediated by facilitating differentiation through destabilization of pluripotency along with other not yet defined targets.
Assuntos
Diferenciação Celular , Endoderma/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Mesoderma/citologia , MicroRNAs/genética , Células Cultivadas , Endoderma/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mesoderma/metabolismo , MicroRNAs/metabolismo , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismoRESUMO
Recent studies highlighted long noncoding RNAs (lncRNAs) to play an important role in cardiac development. However, understanding of lncRNAs in cardiac diseases is still limited. Global lncRNA expression profiling indicated that several lncRNA transcripts are deregulated during pressure overload-induced cardiac hypertrophy in mice. Using stringent selection criteria, we identified Chast (cardiac hypertrophy-associated transcript) as a potential lncRNA candidate that influences cardiomyocyte hypertrophy. Cell fractionation experiments indicated that Chast is specifically up-regulated in cardiomyocytes in vivo in transverse aortic constriction (TAC)-operated mice. In accordance, CHAST homolog in humans was significantly up-regulated in hypertrophic heart tissue from aortic stenosis patients and in human embryonic stem cell-derived cardiomyocytes upon hypertrophic stimuli. Viral-based overexpression of Chast was sufficient to induce cardiomyocyte hypertrophy in vitro and in vivo. GapmeR-mediated silencing of Chast both prevented and attenuated TAC-induced pathological cardiac remodeling with no early signs on toxicological side effects. Mechanistically, Chast negatively regulated Pleckstrin homology domain-containing protein family M member 1 (opposite strand of Chast), impeding cardiomyocyte autophagy and driving hypertrophy. These results indicate that Chast can be a potential target to prevent cardiac remodeling and highlight a general role of lncRNAs in heart diseases.
Assuntos
RNA Longo não Codificante/metabolismo , Remodelação Ventricular/genética , Animais , Sequência de Bases , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Pressão , RNA Longo não Codificante/genética , Transdução de Sinais , Pesquisa Translacional BiomédicaRESUMO
BACKGROUND: Long noncoding ribonucleic acids (lncRNAs) are a subclass of regulatory noncoding ribonucleic acids for which expression and function in human endothelial cells and angiogenic processes is not well studied. OBJECTIVES: The authors discovered hypoxia-sensitive human lncRNAs via next-generation ribonucleic acid sequencing and microarray approaches. To address their functional importance in angiogenic processes, several endothelial lncRNAs were characterized for their angiogenic characteristics in vitro and ex vivo. METHODS: Ribonucleic acid sequencing and microarray-derived data showed specific endothelial lncRNA expression changes after hypoxia. Validation experiments confirmed strong hypoxia-dependent activation of 2 intergenic lncRNAs: LINC00323 and MIR503HG. RESULTS: Silencing of these lncRNA transcripts led to angiogenic defects, including repression of growth factor signaling and/or the key endothelial transcription factor GATA2. Endothelial loss of these hypoxia-driven lncRNAs impaired cell-cycle control and inhibited capillary formation. The potential clinical importance of these endothelial lncRNAs to vascular structural integrity was demonstrated in an ex vivo model of human induced pluripotent stem cell-based engineered heart tissue. CONCLUSIONS: The authors report an expression atlas of human hypoxia-sensitive lncRNAs and identified 2 lncRNAs with important functions to sustain endothelial cell biology. LncRNAs hold great promise to serve as important future therapeutic targets of cardiovascular disease.