Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054772

RESUMO

Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation.


Assuntos
Calcinose , Proliferação de Células , Contração Muscular , Músculo Liso Vascular/metabolismo , Fator Plaquetário 4/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel/genética , Músculo Liso Vascular/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fator Plaquetário 4/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298951

RESUMO

The chemokines CCL5 and CXCL4 are deposited by platelets onto endothelial cells, inducing monocyte arrest. Here, the fate of CCL5 and CXCL4 after endothelial deposition was investigated. Human umbilical vein endothelial cells (HUVECs) and EA.hy926 cells were incubated with CCL5 or CXCL4 for up to 120 min, and chemokine uptake was analyzed by microscopy and by ELISA. Intracellular calcium signaling was visualized upon chemokine treatment, and monocyte arrest was evaluated under laminar flow. Whereas CXCL4 remained partly on the cell surface, all of the CCL5 was internalized into endothelial cells. Endocytosis of CCL5 and CXCL4 was shown as a rapid and active process that primarily depended on dynamin, clathrin, and G protein-coupled receptors (GPCRs), but not on surface proteoglycans. Intracellular calcium signals were increased after chemokine treatment. Confocal microscopy and ELISA measurements in cell organelle fractions indicated that both chemokines accumulated in the nucleus. Internalization did not affect leukocyte arrest, as pretreatment of chemokines and subsequent washing did not alter monocyte adhesion to endothelial cells. Endothelial cells rapidly and actively internalize CCL5 and CXCL4 by clathrin and dynamin-dependent endocytosis, where the chemokines appear to be directed to the nucleus. These findings expand our knowledge of how chemokines attract leukocytes to sites of inflammation.


Assuntos
Núcleo Celular/metabolismo , Quimiocina CCL5/metabolismo , Células Endoteliais/metabolismo , Fator Plaquetário 4/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Humanos
3.
Breast Cancer Res ; 20(1): 86, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30075800

RESUMO

BACKGROUND: Mesenchymal transformation of pulmonary endothelial cells contributes to the formation of a metastatic microenvironment, but it is not known whether this precedes or follows early metastasis formation. In the present work, we characterize the development of nitric oxide (NO) deficiency and markers of endothelial-mesenchymal transition (EndMT) in the lung in relation to the progression of 4T1 metastatic breast cancer injected orthotopically in mice. METHODS: NO production, endothelial nitric oxide synthase (eNOS) phosphorylation status, markers of EndMT in the lung, pulmonary endothelium permeability, and platelet activation/reactivity were analyzed in relation to the progression of 4T1 breast cancer metastasis to the lung, as well as to lung tissue remodeling, 1-5 weeks after 4T1 cancer cell inoculation in Balb/c mice. RESULTS: Phosphorylation of eNOS and NO production in the lungs of 4T1 breast cancer-bearing mice was compromised prior to the development of pulmonary metastasis, and was associated with overexpression of Snail transcription factor in the pulmonary endothelium. These changes developed prior to the mesenchymal phenotypic switch in the lungs evidenced by a decrease in vascular endothelial-cadherin (VE-CAD) and CD31 expression, and the increase in pulmonary endothelial permeability, phenomena which coincided with early pulmonary metastasis. Increased activation of platelets was also detected prior to the early phase of metastasis and persisted to the late phase of metastasis, as evidenced by the higher percentage of unstimulated platelets binding fibrinogen without changes in von Willebrand factor and fibrinogen binding in response to ADP stimulation. CONCLUSIONS: Decreased eNOS activity and phosphorylation resulting in a low NO production state featuring pulmonary endothelial dysfunction was an early event in breast cancer pulmonary metastasis, preceding the onset of its phenotypic switch toward a mesenchymal phenotype (EndMT) evidenced by a decrease in VE-CAD and CD31 expression. The latter coincided with development of the first metastatic nodules in the lungs. These findings suggest that early endothelial dysfunction featured by NO deficiency rather than EndMT, might represent a primary regulatory target to prevent early pulmonary metastasis.


Assuntos
Neoplasias da Mama/patologia , Endotélio Vascular/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Óxido Nítrico/deficiência , Animais , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Pulmão/irrigação sanguínea , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação
4.
Biomolecules ; 12(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35625625

RESUMO

Hepatic steatosis and chronic hepatocyte damage ultimately lead to liver fibrosis. Key pathophysiological steps are the activation and transdifferentiation of hepatic stellate cells. We assessed the interplay between hepatocytes and hepatic stellate cells under normal and steatotic conditions. We hypothesized that hepatocyte-derived extracellular vesicles (EVs) modify the phenotype of stellate cells. By high speed centrifugation, EVs were isolated from conditioned media of the hepatocellular carcinoma cell line HepG2 under baseline conditions (C-EVs) or after induction of steatosis by linoleic and oleic acids for 24 h (FA-EVs). Migration of the human stellate cell line TWNT4 and of primary human stellate cells towards the respective EVs and sera of MAFLD patients were investigated using Boyden chambers. Phenotype alterations after incubation with EVs were determined by qRT-PCR, Western blotting and immunofluorescence staining. HepG2 cells released more EVs after treatment with fatty acids. Chemotactic migration of TWNT4 and primary hepatic stellate cells was increased, specifically towards FA-EVs. Prolonged incubation of TWNT4 cells with FA-EVs induced expression of proliferation markers and a myofibroblast-like phenotype. Though the expression of the collagen type 1 α1 gene did not change after FA-EV treatment, expression of the myofibroblast markers, e.g., α-smooth-muscle-cell actin and TIMP1, was significantly increased. We conclude that EVs from steatotic hepatocytes can influence the behavior, phenotypes and expression levels of remodeling markers of stellate cells and guides their directed migration. These findings imply EVs as operational, intercellular communicators in the pathophysiology of steatosis-associated liver fibrosis and might represent a novel diagnostic parameter and therapeutic target.


Assuntos
Vesículas Extracelulares , Fígado Gorduroso , Linhagem Celular , Vesículas Extracelulares/metabolismo , Fígado Gorduroso/metabolismo , Fibrose , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/metabolismo
5.
Front Cardiovasc Med ; 5: 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682509

RESUMO

The ageing population continues to suffer from its primary killer, cardiovascular disease (CVD). Despite recent advances in interventional medicinal and surgical therapies towards the end of the 20th century, the epidemic of cardiovascular disease has not been halted. Yet, rather than receding globally, the burden of CVD has risen to become a top cause of morbidity and mortality worldwide. Most CVD arises from thrombotic rupture of an atherosclerotic plaque, the pathologic thickening of coronary and carotid artery segments and subsequent distal ischemia in heart or brain. In fact, one-fifth of deaths are directly attributable to thrombotic rupture of a vulnerable plaque. Atherosclerotic lesion formation is caused by a concert of interactions between circulating leukocytes and platelets, interacting with the endothelial barrier, signalling into the arterial wall by the release of cytokines and extracellular vesicles (EVs). Both platelet- and cell-derived EVs represent a novel mechanism of cellular communication, particularly by the transport and transfer of cargo and by reprogramming of the recipient cell. These interactions result in phenotypic switching of vascular smooth muscle cells (VSMCs) causing migration and proliferation, and subsequent secretion of EVs. Loss of VSMCs attracts perivascular Mesenchymal Stem Cells (MSCs) from the adventitia, which are a source of VSMCs and contribute to repair after vascular injury. However, continuous stress stimuli eventually switch phenotype of cells into osteochondrogenic VSMCs facilitating vascular calcification. Although Virchow's triad is over 100 years old, it is a reality that is accurate today. It can be briefly summarised as changes in the composition of blood (platelet EVs), alterations in the vessel wall (VSMC phenotypic switching, MSC infiltration and EV release) and disruption of blood flow (atherothrombosis). In this paper, we review the latest relevant advances in the identification of extracellular vesicle pathways as well as VSMCs and pericyte/MSC phenotypic switching, underlying vascular calcification.

6.
J Am Heart Assoc ; 7(7)2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581224

RESUMO

BACKGROUND: Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. METHODS AND RESULTS: Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte-specific overexpression of G-αq*44 protein were studied before the end-stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6- to 10-month-old but not in 3-month-old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood-brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E-selectin immunoreactivity, which was accompanied by increased amyloid-ß1-42 accumulation in piriform cortex and increased cortical oxidative stress (8-OHdG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO-dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3- to 10-month-old Tgαq*44 mice, but it was not associated with increased platelet-dependent thrombogenicity. CONCLUSIONS: We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation.


Assuntos
Comportamento Animal , Encéfalo/irrigação sanguínea , Artérias Cerebrais/fisiopatologia , Transtornos Cognitivos/etiologia , Demência Vascular/etiologia , Encefalite/etiologia , Endotélio Vascular/fisiopatologia , Insuficiência Cardíaca/complicações , Peptídeos beta-Amiloides/metabolismo , Animais , Plaquetas/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Permeabilidade Capilar , Artérias Cerebrais/metabolismo , Circulação Cerebrovascular , Cognição , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Demência Vascular/metabolismo , Demência Vascular/fisiopatologia , Demência Vascular/psicologia , Modelos Animais de Doenças , Progressão da Doença , Encefalite/metabolismo , Encefalite/patologia , Encefalite/fisiopatologia , Endotélio Vascular/metabolismo , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fenótipo , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
7.
Oncotarget ; 9(25): 17810-17824, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29707148

RESUMO

Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously. In conclusion, distinct platelet-dependent mechanisms inhibited by ASA+Cl treatment promoted cancer malignancy and VM in the presence of primary tumour and afforded protection against pulmonary metastasis in the absence of primary tumour. In view of our data, long-term inhibition of platelet function by dual anti-platelet therapy (ASA+Cl) might pose a hazard when applied to a patient with undiagnosed and untreated malignant cancer prone to undergo VM.

8.
Am J Cancer Res ; 7(9): 1926-1936, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979814

RESUMO

It has been repeatedly shown that regular aerobic exercise exerts beneficial effects on incidence and progression of cancer. However, the data regarding effects of exercise on metastatic dissemination remain conflicting. Therefore, in the present study the possible preventive effects of voluntary wheel running on primary tumor growth and metastases formation in the model of spontaneous pulmonary metastasis were analyzed after orthotopic injection of 4T1 breast cancer cells into mammary fat pads of female Balb/C mice. This study identified that in the mice injected with 4T1 breast cancer cells and running on the wheels (4T1 ex) the volume and size of the primary tumor were not affected, but the number of secondary nodules formed in the lungs was significantly increased compared to their sedentary counterparts (4T1 sed). This effect was associated with decreased NO production in the isolated aorta of exercising mice (4T1 ex), suggesting deterioration of endothelial function that was associated with lower platelet count without their overactivation. This was evidenced by comparable selectin P, active GPIIb/IIIa expression, fibrinogen and vWF binding on the platelet surface. In conclusion, voluntary wheel running appeared to impair, rather than improve endothelial function, and to promote, but not decrease metastasis in the murine orthotopic model of metastatic breast cancer. These results call for revising the notion of the persistent beneficial effects of voluntary exercise on breast cancer progression, though further studies are needed to elucidate mechanisms involved in pro-metastatic effects of voluntary exercise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA