RESUMO
Costs associated with musculoskeletal diseases in the United States account for 5.7% of the Gross Domestic Product (GDP) (Weinstein et al. 2018). As such, there is a need to pursue new ideas in orthopaedic implants that can decrease cost and improve patient care. In the recent years, 3D printing of polymers using Fused Deposition Modeling (FDM) and metals using Direct Metal Laser Sintering (DMLS) has opened several exciting possibilities to create customized orthopaedic implants. Such implants can be engineered to release antibiotics in a controlled manner by infusing the drug into the material during manufacturing stage. However, the prevalence of high temperature could impact the anti-bacterial effectiveness of the eluted antibiotics in such implants. An alternative approach to circumvent this issue would be to modify the implant geometry to incorporate built-in design features such as micro-channels and reservoirs in which antibiotics can be introduced prior to the surgical procedure. Irrespective of the approach used, the ability of 3D printed orthopaedic implants to elute antibiotics, and the rate of elution are not well understood. The purpose of this article is to study the elution of doxycycline through 3D printed femoral implants using three different materials: Poly-Lactic Acid (PLA), Poly-Caprolactone (PCL) and Titanium grade Ti-6Al-4V. The PLA and Ti-6Al-4V implants were designed with built-in reservoirs and micro-channels in which doxycycline was introduced post the manufacturing stage. However, the PCL implants were printed from a PCL spool that was infused with doxycycline using an extruder. The PLA and Ti-6Al-4V experiments were run for a period of 31 days and the PCL experiment for one day. The antibacterial ability of eluted doxycycline from all implants were examined using Kirby-Bauer test on the bacteria E.coli k-12. The results show that most of doxycycline eluted through the three materials in the first 24 hours. After the initial spike, a steady release was achieved for the PLA and Ti-6Al-4V implants for 30 days. During this timeframe, Ti-6Al-4V implants released more doxycycline than the PLA implant. The eluted antibiotics through all the implants demonstrated the ability to kill bacteria in the subsequent Kirby-Bauer test. These outcomes show that irrespective of how the antibiotics were introduced, 3D printed polymeric and metallic implants have great potential in orthopaedic applications.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Fêmur , Impressão Tridimensional , Próteses e Implantes , Ligas , Doxiciclina/química , Doxiciclina/farmacologia , Testes de Sensibilidade Microbiana , Poliésteres/química , Titânio/químicaRESUMO
The heterogeneous composition and mechanical properties of the supraspinatus tendon offer an opportunity for studying the structure-function relationships of fibrous musculoskeletal connective tissues. Previous uniaxial testing has demonstrated a correlation between the collagen fiber angle distribution and tendon mechanics in response to tensile loading both parallel and transverse to the tendon longitudinal axis. However, the planar mechanics of the supraspinatus tendon may be more appropriately characterized through biaxial tensile testing, which avoids the limitation of nonphysiologic traction-free boundary conditions present during uniaxial testing. Combined with a structural constitutive model, biaxial testing can help identify the specific structural mechanisms underlying the tendon's two-dimensional mechanical behavior. Therefore, the objective of this study was to evaluate the contribution of collagen fiber organization to the planar tensile mechanics of the human supraspinatus tendon by fitting biaxial tensile data with a structural constitutive model that incorporates a sample-specific angular distribution of nonlinear fibers. Regional samples were tested under several biaxial boundary conditions while simultaneously measuring the collagen fiber orientations via polarized light imaging. The histograms of fiber angles were fit with a von Mises probability distribution and input into a hyperelastic constitutive model incorporating the contributions of the uncrimped fibers. Samples with a wide fiber angle distribution produced greater transverse stresses than more highly aligned samples. The structural model fit the longitudinal stresses well (median R(2) ≥ 0.96) and was validated by successfully predicting the stress response to a mechanical protocol not used for parameter estimation. The transverse stresses were fit less well with greater errors observed for less aligned samples. Sensitivity analyses and relatively affine fiber kinematics suggest that these errors are not due to inaccuracies in measuring the collagen fiber organization. More likely, additional strain energy terms representing fiber-fiber interactions are necessary to provide a closer approximation of the transverse stresses. Nevertheless, this approach demonstrated that the longitudinal tensile mechanics of the supraspinatus tendon are primarily dependent on the moduli, crimp, and angular distribution of its collagen fibers. These results add to the existing knowledge of structure-function relationships in fibrous musculoskeletal tissue, which is valuable for understanding the etiology of degenerative disease, developing effective tissue engineering design strategies, and predicting outcomes of tissue repair.
Assuntos
Teste de Materiais , Modelos Biológicos , Manguito Rotador/fisiologia , Resistência à Tração , Idoso , Anisotropia , Colágeno/química , Colágeno/metabolismo , Humanos , Reprodutibilidade dos Testes , Manguito Rotador/metabolismoRESUMO
Structural constitutive modeling approaches are often based on the assumption of affine fiber kinematics, even though this assumption has rarely been evaluated experimentally. We are interested in applying mathematical models to understand the mechanisms responsible for the inhomogeneous, anisotropic, and non-linear properties of human supraspinatus tendon (SST); however, the relationship between macroscopic and fiber-level deformation in this tendon remains unknown and current methods for making this assessment are inadequate. Therefore, the purpose of this study was to develop an improved method for quantitatively assessing agreement between two distributions and to examine the affine assumption in SST by comparing experimental fiber alignment to affine model predictions using this analysis approach. Measured fiber angle values of SST samples in uniaxial tensile tests were compared with predictions of affine fiber deformation using modified projection plots, which provide a method for qualitative and quantitative comparisons of two distributions. The projection plot metrics of offset and range, which were developed in this study, are of particular benefit by providing a quantitative representation of agreement that can be subjected to statistical comparisons. For SST, offset and range values varied by tendon location and test orientation, with more affine deformation evidenced for tendon regions of higher alignment. Results suggest that non-affine fiber behavior is dependent on specific tissue, orientation of the applied stretch relative to the fiber organization, and length scale of the observation. In addition, this study has established a method for evaluating the affine assumption in other tissues.
Assuntos
Biofísica/métodos , Modelos Biológicos , Tendões/fisiologia , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade , Tendões/anatomia & histologiaRESUMO
Modeling of connective tissues often includes collagen fibers explicitly as one of the components. These fibers can be oriented in many directions; therefore, several studies have considered statistical distributions to describe the fiber arrangement. One approach to formulate a constitutive framework for distributed fibers is to express the mechanical parameters, such as strain energy and stresses, in terms of angular integrals. These integrals represent the addition of the contribution of infinitesimal fractions of fibers oriented in a given direction. This approach leads to accurate results; however, it requires lengthy calculations. Recently, the use of generalized structure tensors has been proposed to represent the angular distribution in the constitutive equations of the fibers. Although this formulation is much simpler and fewer calculations are required, such structure tensors can only be used when all the fibers are in tension and the angular distribution is small. However, the amount of error introduced in these cases of non-tensile fiber loading and large angular distributions have not been quantified. Therefore, the objective of this study is to determine the range of values of angular distribution for which acceptable differences (less than 10%) between these two formulations are obtained. It was found, analytically and numerically, that both formulations are equivalent for planar distributions under equal-biaxial stretch. The comparison also showed, for other loading conditions, that the differences decrease when the fiber distribution is very small. Differences of less than 10% were usually obtained when the fiber distribution was very low (κ ≈ 0.03; κ ranges between 0 and 1/3, for aligned and isotropic distributed fibers, respectively). This range of angular distribution greatly limits the types of tissue that can be accurately analyzed using generalized structure tensors. It is expected that the results from this study guide the selection of a proper approach to analyze a particular tissue under a particular loading condition.