RESUMO
OBJECTIVES: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly important in patients with multiple myeloma (MM). The objective of this study was to train and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient (ADC) maps in patients with MM, which automatically segments pelvic bones and subsequently extracts objective, representative ADC measurements from each bone. MATERIALS AND METHODS: In this retrospective multicentric study, 180 MRIs from 54 patients were annotated (semi)manually and used to train an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. The quality of the automatic segmentation was evaluated on 15 manually segmented whole-body MRIs from 3 centers using the dice score. In 3 independent test sets from 3 centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation and manual ADC measurements from 2 independent radiologists was evaluated. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed MM who had undergone bone marrow biopsy, ADC measurements were correlated with biopsy results using Spearman correlation. RESULTS: The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, whereas the interrater experiment gave mean dice scores of 0.86, 0.86, and 0.77, respectively. The agreement between radiologists' manual ADC measurements and automatic ADC measurements was as follows: the bias between the first reader and the automatic approach was 49 × 10 -6 mm 2 /s, 7 × 10 -6 mm 2 /s, and -58 × 10 -6 mm 2 /s, and the bias between the second reader and the automatic approach was 12 × 10 -6 mm 2 /s, 2 × 10 -6 mm 2 /s, and -66 × 10 -6 mm 2 /s for the right pelvis, the left pelvis, and the sacral bone, respectively. The bias between reader 1 and reader 2 was 40 × 10 -6 mm 2 /s, 8 × 10 -6 mm 2 /s, and 7 × 10 -6 mm 2 /s, and the mean absolute difference between manual readers was 84 × 10 -6 mm 2 /s, 65 × 10 -6 mm 2 /s, and 75 × 10 -6 mm 2 /s. Automatically extracted ADC values significantly correlated with bone marrow plasma cell infiltration ( R = 0.36, P = 0.007). CONCLUSIONS: In this study, a nnU-Net was trained that can automatically segment pelvic bone marrow from whole-body ADC maps in multicentric data sets with a quality comparable to manual segmentations. This approach allows automatic, objective bone marrow ADC measurements, which agree well with manual ADC measurements and can help to overcome interrater variability or nonrepresentative measurements. Automatically extracted ADC values significantly correlate with bone marrow plasma cell infiltration and might be of value for automatic staging, risk stratification, or therapy response assessment.
Assuntos
Aprendizado Profundo , Mieloma Múltiplo , Humanos , Imageamento por Ressonância Magnética/métodos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/patologia , Medula Óssea/diagnóstico por imagem , Estudos Retrospectivos , Imagem Corporal Total/métodos , Imagem de Difusão por Ressonância Magnética/métodosRESUMO
OBJECTIVES: In multiple myeloma and its precursor stages, plasma cell infiltration (PCI) and cytogenetic aberrations are important for staging, risk stratification, and response assessment. However, invasive bone marrow (BM) biopsies cannot be performed frequently and multifocally to assess the spatially heterogenous tumor tissue. Therefore, the goal of this study was to establish an automated framework to predict local BM biopsy results from magnetic resonance imaging (MRI). MATERIALS AND METHODS: This retrospective multicentric study used data from center 1 for algorithm training and internal testing, and data from center 2 to 8 for external testing. An nnU-Net was trained for automated segmentation of pelvic BM from T1-weighted whole-body MRI. Radiomics features were extracted from these segmentations, and random forest models were trained to predict PCI and the presence or absence of cytogenetic aberrations. Pearson correlation coefficient and the area under the receiver operating characteristic were used to evaluate the prediction performance for PCI and cytogenetic aberrations, respectively. RESULTS: A total of 672 MRIs from 512 patients (median age, 61 years; interquartile range, 53-67 years; 307 men) from 8 centers and 370 corresponding BM biopsies were included. The predicted PCI from the best model was significantly correlated ( P ≤ 0.01) to the actual PCI from biopsy in all internal and external test sets (internal test set: r = 0.71 [0.51, 0.83]; center 2, high-quality test set: r = 0.45 [0.12, 0.69]; center 2, other test set: r = 0.30 [0.07, 0.49]; multicenter test set: r = 0.57 [0.30, 0.76]). The areas under the receiver operating characteristic of the prediction models for the different cytogenetic aberrations ranged from 0.57 to 0.76 for the internal test set, but no model generalized well to all 3 external test sets. CONCLUSIONS: The automated image analysis framework established in this study allows for noninvasive prediction of a surrogate parameter for PCI, which is significantly correlated to the actual PCI from BM biopsy.
Assuntos
Aprendizado Profundo , Mieloma Múltiplo , Masculino , Humanos , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/genética , Medula Óssea/diagnóstico por imagem , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Biópsia , Aberrações CromossômicasRESUMO
PURPOSE: This paper introduces the SciKit-Surgery libraries, designed to enable rapid development of clinical applications for image-guided interventions. SciKit-Surgery implements a family of compact, orthogonal, libraries accompanied by robust testing, documentation, and quality control. SciKit-Surgery libraries can be rapidly assembled into testable clinical applications and subsequently translated to production software without the need for software reimplementation. The aim is to support translation from single surgeon trials to multicentre trials in under 2 years. METHODS: At the time of publication, there were 13 SciKit-Surgery libraries provide functionality for visualisation and augmented reality in surgery, together with hardware interfaces for video, tracking, and ultrasound sources. The libraries are stand-alone, open source, and provide Python interfaces. This design approach enables fast development of robust applications and subsequent translation. The paper compares the libraries with existing platforms and uses two example applications to show how SciKit-Surgery libraries can be used in practice. RESULTS: Using the number of lines of code and the occurrence of cross-dependencies as proxy measurements of code complexity, two example applications using SciKit-Surgery libraries are analysed. The SciKit-Surgery libraries demonstrate ability to support rapid development of testable clinical applications. By maintaining stricter orthogonality between libraries, the number, and complexity of dependencies can be reduced. The SciKit-Surgery libraries also demonstrate the potential to support wider dissemination of novel research. CONCLUSION: The SciKit-Surgery libraries utilise the modularity of the Python language and the standard data types of the NumPy package to provide an easy-to-use, well-tested, and extensible set of tools for the development of applications for image-guided interventions. The example application built on SciKit-Surgery has a simpler dependency structure than the same application built using a monolithic platform, making ongoing clinical translation more feasible.