Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(8): 1208-1221, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879451

RESUMO

T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.


Assuntos
Proteínas de Ciclo Celular , Metiltransferases , Adenosina/análogos & derivados , Animais , Proteínas de Ciclo Celular/metabolismo , Metilação , Metiltransferases/genética , Camundongos , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
2.
Nucleic Acids Res ; 51(19): 10653-10667, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37650648

RESUMO

As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 → T54 → m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.


Assuntos
RNA de Transferência de Metionina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , RNA de Transferência/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA
3.
Acc Chem Res ; 56(22): 3121-3131, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944919

RESUMO

ConspectusIn recent years, there has been a high interest in researching RNA modifications, as they are involved in many cellular processes and in human diseases. A substantial set of enzymes within the cell, called RNA writers, place RNA modifications selectively and site-specifically. Another set of enzymes, called readers, recognize these modifications which guide the fate of the modified RNA. Although RNA is a transient molecule and RNA modification could be removed by RNA degradation, a subclass of enzymes, called RNA erasers, remove RNA modifications selectively and site-specifically to alter the characteristics of the RNA. The detection of RNA modifications can be done by various methods including second and next generation sequencing but also mass spectrometry. An approach capable of both qualitative and quantitative RNA modification analysis is liquid chromatography coupled to mass spectrometry of enzymatic hydrolysates of RNA into nucleosides. However, for successful detection and quantification, various factors must be considered to avoid biased identification and inaccurate quantification. In this Account, we identify three classes of errors that may distort the analysis. These classes comprise (I) errors related to chemical instabilities, (II) errors revolving around enzymatic hydrolysis to nucleosides, and (III) errors arising from issues with chromatographic separation and/or subsequent mass spectrometric analysis.A prominent example for class 1 is Dimroth rearrangement of m1A to m6A, but class 1 also comprises hydrolytic reactions and reactions with buffer components. Here, we also present the conversion of m3C to m3U under mild alkaline conditions and propose a practical solution to overcome these instabilities. Class 2 errors-such as contaminations in hydrolysis reagents or nuclease specificities-have led to erroneous discoveries of nucleosides in the past and possess the potential for misquantification of nucleosides. Impurities in the samples may also lead to class 3 errors: For instance, issues with chromatographic separation may arise from residual organic solvents, and salt adducts may hamper mass spectrometric quantification. This Account aims to highlight various errors connected to mass spectrometry analysis of nucleosides and presents solutions for how to overcome or circumnavigate those issues. Therefore, the authors anticipate that many scientists, but especially those who plan on doing nucleoside mass spectrometry, will benefit from the collection of data presented in this Account as a raised awareness, toward the variety of potential pitfalls, may further enhance the quality of data.


Assuntos
Nucleosídeos , RNA , Humanos , Nucleosídeos/química , RNA/química , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
4.
J Fish Biol ; 104(6): 2081-2085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38456578

RESUMO

In May 2022, twelve prickly sharks, Echinorhinus cookei Pietschmann 1928, were sighted at 151-350 m depth in the Cordillera de Coiba seamounts, Pacific Panama. This discovery expands our knowledge of the distribution and habitat use of this rare deep-sea species. It underscores the potential significance of the Cordillera de Coiba seamounts, an offshore marine protected area, as a critical habitat for E. cookei, a species threatened by commercial fishing. Although unverified reports exist on its presence in the tropical eastern Pacific, this publication represents the first documented record of live specimens of E. cookei in Panama.


Assuntos
Ecossistema , Tubarões , Animais , Panamá , Oceano Pacífico , Masculino , Feminino , Distribuição Animal
5.
Chembiochem ; 23(18): e202200270, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35822398

RESUMO

mRNA methylation is an important regulator of many physiological processes in eukaryotes but has not been studied in depth in prokaryotes. Working with bacterial mRNA is challenging because it lacks a poly(A)-tail. However, methods for detecting RNA modifications, both sequencing and mass spectrometry, rely on efficient preparation of mRNA. Here, we compared size-dependent separation by electrophoresis and rRNA depletion for enrichment of Escherichia coli mRNA. The purification success was monitored by qRT-PCR and RNA sequencing. Neither method allowed complete removal of rRNA. Nevertheless, we were able to quantitatively analyze several modified nucleosides in the different RNA types. We found evidence for stress dependent RNA modification reprofiling in rRNA, but also several modified nucleosides in the mRNA enriched fractions showed significant changes.


Assuntos
Escherichia coli , RNA , Escherichia coli/genética , Nucleosídeos/química , RNA/química , RNA Mensageiro/genética , RNA Ribossômico
6.
Org Divers Evol ; 21(4): 691-717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658667

RESUMO

In the deep sea, the phylogeny and biogeography of only a few taxa have been well studied. Although more than 200 species in 32 genera have been described for the asellote isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 from all ocean basins, their phylogenetic relationships are not completely understood. There is little doubt about the close relationship of these families, but the taxonomic position of a number of genera is so far unknown. Based on a combined morphological phylogeny using the Hennigian method with a dataset of 107 described species and a molecular phylogeny based on three markers (COI, 16S, and 18S) with 75 species (most new to science), we could separate Desmosomatidae and Nannoniscidae as separate families. However, we could not support the concept of the subfamilies Eugerdellatinae Hessler, 1970 and Desmosomatinae Hessler, 1970. Most genera of both families were well supported, but several genera appear as para- or even polyphyletic. Within both families, convergent evolution and analogies caused difficulty in defining apomorphies for phylogenetic reconstructions and this is reflected in the results of the concatenated molecular tree. There is no biogeographic pattern in the distribution as the genera occur over the entire Atlantic and Pacific Ocean, showing no specific phylogeographical pattern. Poor resolution at deep desmosomatid nodes may reflect the long evolutionary history of the family and rapid evolutionary radiations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-021-00509-9.

7.
Scand J Med Sci Sports ; 29(1): 144-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30276916

RESUMO

PURPOSE: A small share of the world's population meets current physical activity guidelines, which recommend regular engagement in endurance, strength, and neuromotor exercise. As lack of time represents a major cause of inactivity, multidimensional training methods with short durations may provide a promising alternative to classical, volume-oriented approaches focusing on one biomotor ability. This trial examined the effects of a high-intensity functional circuit training (HIFCT) on motor performance and exercise motivation in untrained adults. METHODS: Thirty-three inactive participants were randomly allocated to two groups exercising for six weeks. The intervention group (HIFCT, n = 20) 3×/week performed functional whole-body exercises in a circuit. Each 15-minute workout included repetitive 20s all-out bouts with 10s breaks. In the comparison group (moderate aerobic exercise, MAE, n = 13), the participants walked 3×/week for 50 minutes at moderate intensity. Measured motor outcomes were cycling endurance capacity (respiratory threshold, maximum workload), maximum strength (leg and chest press), postural control (force plate), and jump capacity (counter-movement jump, single leg hop for distance); exercise motivation was assessed using the self-concordance index. RESULTS: In comparison with MAE, HIFCT enhanced maximum leg strength (between-group difference of relative pre- to post-changes of 5.0%), shoulder strength (7.6%), and endurance workload (5.0%; P < 0.05), while increasing motivation to exercise (+5.5 points, P < 0.05). No between-group differences occurred for postural control and jump capacity (P > 0.05). CONCLUSION: Despite considerably shorter training duration, HIFCT enhances motor function and motivation to exercise more effectively than MAE. Further research should investigate the long-term adherence to the program and its effectiveness in other settings.


Assuntos
Aptidão Cardiorrespiratória , Exercícios em Circuitos , Exercício Físico/fisiologia , Exercício Físico/psicologia , Motivação , Adulto , Teste de Esforço , Feminino , Humanos , Masculino , Força Muscular , Consumo de Oxigênio , Resistência Física , Equilíbrio Postural , Caminhada , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 111(23): 8524-9, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912168

RESUMO

Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of "neutral" biodiversity models--which assume ecological equivalence of species--to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities' most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.


Assuntos
Algoritmos , Biodiversidade , Biologia Marinha/métodos , Modelos Biológicos , Clima Frio , Geografia , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Clima Tropical
9.
Zootaxa ; 3784: 101-19, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24872040

RESUMO

Macrofaunal collections obtained during the French-German BIONOD expedition to the Clarion Clipperton Fracture Zone (CCFZ), equatorial NE Pacific, in spring 2012 yielded two new nannoniscid species, Hebefustis juansenii sp. n. and H. vecino sp. n., which are described in the current paper. The number and position of posterolateral spines of the pleotelson distinguishes the two new species from all other species in the genus. Both species are similar to each other differ, though, in the length of maxilliped epipodite, the presence of a robust spine on pereonite 2 (in H. juansenii sp. n.) as well as the shape of pereonite 4 anterior margin. They also resemble H. primitivus Menzies, 1962 but can be differentiated from the latter by the shape of lateral margins of pereonites 1-4 and the setation and shape of male pleopod 1. A distribution map and a taxonomic key to all known species in the genus are provided, as well as a checklist of known nannoniscid species from the Pacific is presented.


Assuntos
Isópodes/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Animais , Ecossistema , Feminino , Isópodes/anatomia & histologia , Masculino , Oceano Pacífico
10.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854053

RESUMO

Background: Epigenetic regulation of gene expression and host defense is well established in microbial communities, with dozens of DNA modifications comprising the epigenomes of prokaryotes and bacteriophage. Phosphorothioation (PT) of DNA, in which a chemically-reactive sulfur atom replaces a non-bridging oxygen in the sugar-phosphate backbone, is catalyzed by dnd and ssp gene families widespread in bacteria and archaea. However, little is known about the role of PTs or other microbial epigenetic modifications in the human microbiome. Here we optimized and applied fecal DNA extraction, mass spectrometric, and metagenomics technologies to characterize the landscape and temporal dynamics of gut microbes possessing PT modifications. Results: Exploiting the nuclease-resistance of PTs, mass spectrometric analysis of limit digests of PT-containing DNA reveals PT dinucleotides as part of genomic consensus sequences, with 16 possible dinucleotide combinations. Analysis of mouse fecal DNA revealed a highly uniform spectrum of 11 PT dinucleotides in all littermates, with PTs estimated to occur in 5-10% of gut microbes. Though at similar levels, PT dinucleotides in fecal DNA from 11 healthy humans possessed signature combinations and levels of individual PTs. Comparison with a widely distributed microbial epigenetic mark, m6dA, suggested temporal dynamics consistent with expectations for gut microbial communities based on Taylor's Power Law. Application of PT-seq for site-specific metagenomic analysis of PT-containing bacteria in one fecal donor revealed the larger consensus sequences for the PT dinucleotides in Bacteroidota, Firmicutes, Actinobacteria, and Proteobacteria, which differed from unbiased metagenomics and suggested that the abundance of PT-containing bacteria did not simply mirror the spectrum of gut bacteria. PT-seq further revealed low abundance PT sites not detected as dinucleotides by mass spectrometry, attesting to the complementarity of the technologies. Conclusions: The results of our studies provide a benchmark for understanding the behavior of an abundant and chemically-reactive epigenetic mark in the human gut microbiome, with implications for inflammatory conditions of the gut.

11.
Nat Struct Mol Biol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918637

RESUMO

Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors.

12.
Nature ; 447(7142): 307-11, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17507981

RESUMO

Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.


Assuntos
Biodiversidade , Geografia , Água do Mar , Animais , Regiões Antárticas , Invertebrados/classificação , Invertebrados/fisiologia , Biologia Marinha , Oceanos e Mares , Filogenia
13.
RSC Chem Biol ; 4(5): 354-362, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181633

RESUMO

RNA is dynamically modified and has the potential to respond to environmental changes and tune translation. The objective of this work is to uncover the temporal limitation of our recently developed cell culture NAIL-MS (nucleic acid isotope labelling coupled mass spectrometry) technology and overcome it. Actinomycin D (AcmD), an inhibitor of transcription, was used in the NAIL-MS context to reveal the origin of hybrid nucleoside signals composed of unlabelled nucleosides and labelled methylation marks. We find that the formation of these hybrid species depends exclusively on transcription for Poly-A RNA and rRNA but is partly transcription-independent for tRNA. This finding suggests that tRNA modifications adapt and are dynamically regulated by cells to overcome e.g. stress. Future studies on the tRNA modification mediated stress response are now accessible and the temporal resolution of NAIL-MS is improved by the use of AcmD.

14.
Zootaxa ; 5293(3): 401-434, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37518475

RESUMO

Hadal trenches are perceived as a unique deep-sea ecosystem with fundamentally different communities compared to the nearby abyss. So far, however, scarce information exists about how populations are genetically linked within a trench and about mechanisms for species divergence. The present study presents the morphological and molecular-genetic characterization and description of a new nannoniscid species within the genus Austroniscus Vanhöffen, 1914 obtained from abyssal and hadal depths of the Puerto Rico Trench, NW Atlantic. Samples were collected as part of the Vema-TRANSIT expedition onboard RV Sonne in January 2015. Because of the large depth differences between sampling locations (4,552-8,338 m), we expected to find different species within the genus inhabiting abyssal and hadal sites. Initial morphological examination using traditional light microscopy and Confocal Laser Scanning Microscopy was paired with subsequent molecular analysis based on mtDNA (COI and 16S). Contrary to our assumptions, combined morphological and molecular species delimitation analyses (sGMYC, mPTP, ABGD) revealed the presence of only one species spanning the abyssal and hadal seafloor of the Puerto Rico Trench. In addition, comparison with type material could show that this species belongs to a new species, Austroniscus brandtae n. sp., which is described herein. Incongruence between some species delimitation methods suggesting the presence of multiple species is interpreted as strong genetic population structuring within the trench, which is also supported by the analysis of the haplotype networks. The geographic and bathymetric distribution of Austroniscus species is discussed. The species described herein represents the first in the genus Austroniscus from the Atlantic Ocean and the deepest record of the genus to date, and hence significantly expanding previously known limits of its geographic and bathymetric range.


Assuntos
Isópodes , Animais , Isópodes/genética , DNA Mitocondrial/genética , Ecossistema , Porto Rico
15.
Sci Rep ; 13(1): 7181, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137936

RESUMO

Paleodictyon is one of the most iconic and widespread of trace fossils in the geological record. However, modern examples are less well known and restricted to deep-sea settings at relatively low latitudes. Here, we report the distribution of Paleodictyon at six abyssal sites near the Aleutian Trench. This study reveals for the first time the presence of Paleodictyon at Subarctic latitudes (51°-53°N) and at depths over 4500 m, although the traces were not observed at stations deeper than 5000 m suggesting that there is some bathymetric constraint for the trace maker. Two small Paleodictyon morphotypes were recognized (average mesh size of 1.81 cm), one having a central hexagonal pattern, the other being characterized by a non-hexagonal pattern. Within the study area, Paleodictyon shows no apparent correlation with local environmental parameters. Finally, based on a worldwide morphological comparison, we conclude that the new Paleodictyon specimens represent distinct ichnospecies that are associated with the relatively eutrophic conditions in this region. Their smaller size may reflect this more eutrophic setting in which sufficient food can be obtained from a smaller area in order to satisfy the energetic requirements of the tracemakers. If so, then Paleodictyon size may provide some assistance when interpreting paleoenvironmental conditions.


Assuntos
Fósseis
16.
Antiviral Res ; 218: 105716, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690700

RESUMO

Sangivamycin (S) is an adenosine (A) nucleoside analog with low nanomolar antiviral activity against SARS-CoV-2 in vitro. Previously, low nanomolar antiviral efficacy was revealed when tested against multiple viral variants in several cell types. SARS-CoV-2 RNA isolated from live virus infected cells and the virions released from these cells was analyzed by mass spectrometry (MS) for S incorporation. Dose-dependent incorporation occurred up to 1.8 S per 1,000 nucleotides (49 S per genome) throughout the viral genomes isolated from both infected cells and viral particles, but this incorporation did not change the viral mutation rate. In contrast, host mRNA, affinity purified from the same infected and treated cells, contained little or no S. Sangivamycin triphosphate (STP) was synthesized to evaluate its incorporation into RNA by recombinant SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) under defined in vitro conditions. SARS-CoV-2 RdRp showed that S was not a chain terminator and S containing oligonucleotides templated as A. Though the antiviral mechanism remains to be determined, the data suggests that SARS-CoV-2 RdRp incorporates STP into SARS-CoV-2 RNA, which does not significantly impair viral RNA synthesis or the mutation rate.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Antivirais/química
17.
Nat Commun ; 14(1): 166, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631525

RESUMO

The heptad repeats of the C-terminal domain (CTD) of RNA polymerase II (Pol II) are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulators as well as RNA capping, splicing and 3'end processing factors. The SPOC domain of PHF3 was recently identified as a CTD reader domain specifically binding to phosphorylated serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP (also known as SPEN) and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP SPOC in complex with CTD and identify the molecular determinants for its specific binding to phosphorylated serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with writers and readers of m6A, the most abundant RNA modification. RBM15 positively regulates m6A levels and mRNA stability in a SPOC-dependent manner, while SHARP SPOC is essential for its localization to inactive X-chromosomes. Our findings suggest that the SPOC domain is a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes.


Assuntos
Proteínas de Ligação a DNA , Fosfosserina , Domínios Proteicos , Proteínas de Ligação a RNA , Transcrição Gênica , Humanos , Fosforilação , Fosfosserina/química , Fosfosserina/metabolismo , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Transcrição Gênica/fisiologia , Domínios Proteicos/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a RNA/química
18.
Plant Commun ; 4(6): 100634, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37287225

RESUMO

The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.


Assuntos
Arabidopsis , RNA , RNA/metabolismo , Epigenoma , Luz , Fotossíntese/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Arabidopsis/metabolismo
19.
ACS Chem Biol ; 18(12): 2441-2449, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37962075

RESUMO

The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.


Assuntos
Ácidos Nucleicos , RNA , Epigênese Genética , Biologia
20.
Ecol Evol ; 12(4): e8802, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35414894

RESUMO

Understanding the ecological requirements and thresholds of individual species is crucial to better predict potential outcomes of climate change on species distribution. In particular, species optima and lower and upper limits along resource gradients require attention. Based on Huisman-Olff-Fresco (HOF) models, we determined species-specific responses along gradients of nine environmental parameters including depth in order to estimate niche attributes of 30 deep-sea benthic amphipods occurring around Iceland. We, furthermore, examined the relationships between niche breadth, occupancy, and geographic range assuming that species with a wider niche are spatially more widely dispersed and vice versa. Overall, our results reveal that species react very differently to environmental gradients, which is independent of the family affiliation of the respective species. We could infer a strong relationship between occupancy and geographic range and also relate this to differences in niche breadth; that is specialist species with a narrow niche had a more limited distribution and may thus be more threatened by changing environmental conditions than generalist species, which are more widespread. Given the preponderance of rare species in the deep sea, this implies that many species could be at risk. However, this must be carefully weighed against geographical data gaps in this area, given that many deep-sea areas are severely undersampled and the true distribution of most species is unknown. After all, our results underline that an accurate taxonomic classification is of crucial importance, without which ecological niche properties cannot be determined and which is hence fundamental for the assessment and understanding of changes in biodiversity in the face of increasing human perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA