Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2204146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960845

RESUMO

Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.


Assuntos
Ecossistema , Microbiota , Plantas , Animais , Bactérias , Plantas/microbiologia
2.
New Phytol ; 234(4): 1464-1476, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218016

RESUMO

Habitat restoration may depend on the recovery of plant microbial symbionts such as arbuscular mycorrhizal (AM) fungi, but this requires a better understanding of the rules that govern their community assembly. We examined the interactions of soil and host-associated AM fungal communities between remnant and restored patches of subtropical montane forests. While AM fungal richness did not differ between habitat types, community membership did and was influenced by geography, habitat and host. These differences were largely driven by rare host-specific AM fungi that displayed near-complete turnover between forest types, while core AM fungal taxa were highly abundant and ubiquitous. The bipartite networks in the remnant forest were more specialized and hosts more specific than in the restored forest. Host-associated AM fungal communities nested within soil communities in both habitats, but only significantly so in the restored forest. Our results provide evidence that restored and remnant forests harbour the same core fungal symbionts, while rare host-specific taxa differ, and that geography, host identity and taxonomic resolution strongly affect the observed distribution patterns of these fungi. We suggest that host-specific interactions with AM fungi, as well as spatial processes, should be explicitly considered to effectively re-establish target host and symbiont communities.


Assuntos
Micobioma , Micorrizas , Florestas , Fungos , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo
3.
Microbiome ; 12(1): 184, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342398

RESUMO

The potential promise of the microbiome to ameliorate a wide range of societal and ecological challenges, from disease prevention and treatment to the restoration of entire ecosystems, hinges not only on microbiome engineering but also on the stability of beneficial microbiomes. Yet the properties of microbiome stability remain elusive and challenging to discern due to the complexity of interactions and often intractable diversity within these communities of bacteria, archaea, fungi, and other microeukaryotes. Networks are powerful tools for the study of complex microbiomes, with the potential to elucidate structural patterns of stable communities and generate testable hypotheses for experimental validation. However, the implementation of these analyses introduces a cascade of dichotomies and decision trees due to the lack of consensus on best practices. Here, we provide a road map for network-based microbiome studies with an emphasis on discerning properties of stability. We identify important considerations for data preparation, network construction, and interpretation of network properties. We also highlight remaining limitations and outstanding needs for this field. This review also serves to clarify the varying schools of thought on the application of network theory for microbiome studies and to identify practices that enhance the reproducibility and validity of future work. Video Abstract.


Assuntos
Archaea , Bactérias , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Archaea/classificação , Archaea/genética , Fungos/classificação , Fungos/genética , Reprodutibilidade dos Testes , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA