RESUMO
In this Letter, we investigate the energy-scaling rules of hollow-core fiber (HCF)-based nonlinear pulse propagation and compression merged with high-energy Yb-laser technology, in a regime where the effects such as plasma disturbance, optical damages, and setup size become important limiting parameters. As a demonstration, 70 mJ 230 fs pulses from a high-energy Yb laser amplifier were compressed down to 40 mJ 25 fs by using a 2.8-m-long stretched HCF with a core diameter of 1 mm, resulting in a record peak power of 1.3 TW. This work presents a critical advance of a high-energy pulse (hundreds of mJ level) nonlinear interactions platform based on high energy sub-ps Yb technology with considerable applications, including driving intense THz, X-ray pulses, Wakefield acceleration, parametric wave mixing and ultraviolet generation, and tunable long-wavelength generation via enhanced Raman scattering.
RESUMO
We report on a diode-pumped cryogenically cooled bulk Yb:CaF2 12-pass amplifier delivering 110-mJ, 1030-nm pulses at a 50-Hz repetition rate. The pulses have a spectral bandwidth of 13 nm and are compressed to 225 fs pulse duration in a double reflection grating based compressor having a transmission efficiency of >90%. The measured output beam quality is M2<1.1. A key feature of the amplifier design is the 4f relay imaging onto the gain medium with progressive beam magnification for the mitigation of the spatial gain narrowing effect. The number of passes in the amplifier is scalable by increasing the size of imaging mirrors. In order to prevent accumulation of nonlinear phase due to self-phase modulation in air, the amplifier is enclosed into a low-vacuum case.