Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 143: 142-148, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28802101

RESUMO

Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation.


Assuntos
Materiais Biocompatíveis/química , Ácido Cítrico/química , Elastômeros/química , Tecnologia de Fibra Óptica/instrumentação , Fibras Ópticas , Polímeros/química , Animais , Desenho de Equipamento , Teste de Materiais , Imagem Óptica/instrumentação , Próteses e Implantes , Ratos Sprague-Dawley , Refratometria
2.
Bioact Mater ; 1(1): 2-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28349130

RESUMO

Hernia repair is one of the most commonly performed surgical procedures worldwide, with a multi-billion dollar global market. Implant design remains a critical challenge for the successful repair and prevention of recurrent hernias, and despite significant progress, there is no ideal mesh for every surgery. This review summarizes the evolution of prostheses design toward successful hernia repair beginning with a description of the anatomy of the disease and the classifications of hernias. Next, the major milestones in implant design are discussed. Commonly encountered complications and strategies to minimize these adverse effects are described, followed by a thorough description of the implant characteristics necessary for successful repair. Finally, available implants are categorized and their advantages and limitations elucidated, including non-absorbable and absorbable (synthetic and biologically derived) prostheses, composite prostheses, and coated prostheses. This review not only summarizes the state of the art in hernia repair, but also suggests future research directions toward improved hernia repair utilizing novel materials and fabrication methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA