Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Immun Ageing ; 21(1): 52, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095841

RESUMO

BACKGROUND: Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS: This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION: Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.

2.
J Basic Microbiol ; 63(7): 746-758, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058008

RESUMO

The nutrient-rich vermicompost which is used as manure for the growth and development of plants is rich in microbial flora. These microbes protect the plants against several infectious pathogenic microbes. As certain microbes are known to produce biosurfactants as metabolites, an investigation was carried out to isolate biosurfactant-producing bacterial strains from vermicompost with the efficient antifungal property. From the study, it was revealed that biosurfactant-producing bacterial strains are present in the vermicompost. A total of nine bacterial strains were isolated from the vermicompost. Among them, one most efficient biosurfactant-producing bacterial strains with antifungal properties have been screened. After molecular characterization of the isolated strain, it was revealed that the bacterial strain is Bacillus licheniformis strain SCV1. The strain produces 3.4 ± 0.1 g/L of crude biosurfactant, which when column purified yields 3.1 ± 0.1 g/L of biosurfactant. The biosurfactant exhibited excellent emulsifying activity (E24 ) of 96.56% against crude oil. The produced biosurfactant was identified as a lipopeptide consisting of a mixer of surfactin and iturin. Furthermore, the biosurfactant exhibited significant antifungal activity against a wide range of phytopathogens, showing 76.3% inhibition against Sclerotinia sclerotiorum, 53% inhibition against Colletotrichum gloeosporioides, 51% against Fusarium verticillioides, and 36% against Corynespora cassicolla. Along with antifungal activities, the stain was found to exhibit multiple plant growth-promoting traits. This study, thus indicates that vermicompost might contain biosurfactant-producing microbes which can render protection to the plant against various phytopathogens by the production of biosurfactants and can also stimulate plant growth.


Assuntos
Bacillus licheniformis , Bacillus , Petróleo , Antifúngicos/química , Bacillus/metabolismo , Tensoativos/química , Bacillus licheniformis/metabolismo , Petróleo/metabolismo
3.
Cell Mol Life Sci ; 77(7): 1229-1249, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31584128

RESUMO

Host-microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host-microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.


Assuntos
Caenorhabditis elegans/microbiologia , Interações Hospedeiro-Patógeno , Modelos Animais , Animais , Disbiose/microbiologia , Microbioma Gastrointestinal , Modelos Biológicos
4.
Sci Rep ; 12(1): 18861, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344671

RESUMO

Antimicrobial resistance has been developing fast and incurring a loss of human life, and there is a need for new antimicrobial agents. Naturally occurring antimicrobial peptides offer the characteristics to counter AMR because the resistance development is low or no resistance. Antimicrobial peptides from Paenibacillus peoriae IBSD35 cell-free supernatant were salted out and purified using chromatography and characterized with liquid chromatography-tandem-mass spectrometry. The extract has shown a high and broad spectrum of antimicrobial activity. Combining the strain IBSD35 genome sequence with its proteomic data enabled the prediction of biosynthetic gene clusters by connecting the peptide from LC-MS/MS data to the gene that encode. Antimicrobial peptide databases offered a platform for the effective search, prediction, and design of AMPs and expanded the studies on their isolation, structure elucidation, biological evaluation, and pathway engineering. The genome-based taxonomy and comparisons have shown that P. peoriae IBSD35 is closely related to Paenibacillus peoriae FSL J3-0120. P. peoriae IBSD35 harbored endophytic trait genes and nonribosomal peptide synthases biosynthetic gene clusters. The comparative genomics revealed evolutionary insights and facilitated the discovery of novel SMs using proteomics from the extract of P. peoriae IBSD35. It will increase the potential to find novel bio-molecules to counter AMR.


Assuntos
Anti-Infecciosos , Paenibacillus , Humanos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Paenibacillus/genética , Anti-Infecciosos/farmacologia , Antibacterianos/química , Genômica
5.
Antioxidants (Basel) ; 11(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204151

RESUMO

Since the hypothesis of Dr. Elie Metchnikoff on lactobacilli-mediated healthy aging, several microbes have been reported to extend the lifespan with different features of healthy aging. However, a microbe affecting diverse features of healthy aging is of choice for broader acceptance and marketability as a next-generation probiotic. We employed Caenorhabditis elegans as a model to understand the potential of Lactobacillus plantarum JBC5 (LPJBC5), isolated from fermented food sample on longevity and healthy aging as well as their underlying mechanisms. Firstly, LPJBC5 enhanced the mean lifespan of C. elegans by 27.81% compared with control (untreated). LPBC5-induced longevity was accompanied with better aging-associated biomarkers, such as physical functions, fat, and lipofuscin accumulation. Lifespan assay on mutant worms and gene expression studies indicated that LPJBC5-mediated longevity was due to upregulation of the skinhead-1 (skn-1) gene activated through p38 MAPK signaling cascade. Secondly, the activated transcription factor SKN-1 upregulated the expression of antioxidative, thermo-tolerant, and anti-pathogenic genes. In support, LPJBC5 conferred resistance against abiotic and biotic stresses such as oxidative, heat, and pathogen. LPJBC5 upregulated the expression of intestinal tight junction protein ZOO-1 and improved gut integrity. Thirdly, LPJBC5 improved the learning and memory of worms trained on LPJBC5 compared with naive worms. The results showed upregulation of genes involved in serotonin signaling (ser-1, mod-1, and tph-1) in LPJBC5-fed worms compared with control, suggesting that serotonin-signaling was essential for LPJBC5-mediated improved cognitive function. Fourthly, LPJBC5 decreased the fat accumulation in worms by reducing the expression of genes encoding key substrates and enzymes of fat metabolism (i.e., fat-5 and fat-7). Lastly, LPJBC5 reduced the production of reactive oxygen species and improved mitochondrial function, thereby reducing apoptosis in worms. The capability of a single bacterium on pro-longevity and the features of healthy aging, including enhancement of gut integrity and cognitive functions, makes it an ideal candidate for promotion as a next-generation probiotic.

6.
Front Microbiol ; 8: 279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275373

RESUMO

Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m-1, with the critical micelle concentration (CMC) of 56 mg L-1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

7.
Front Microbiol ; 7: 347, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047463

RESUMO

A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195). The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and yeasts. Optimization for the growth and antimicrobial activity of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and antimicrobial potential of the strain were recorded in GLM medium at 28°C, initial pH 7.4 of the medium and incubation period of 8 days. Based on polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial compounds in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52) showed lowest minimum inhibitory concentration (MIC) against S. aureus MTCC 96 (0.975 µg/mL) whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 µg/mL). Scanning electron microscopy (SEM) revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which are reported to possess diverse biological activity. These results confirmed that the presence of bioactive constituents in EA-PB-52 could be a promising source for the development of potent antimicrobial agents effective against wide range of microbial pathogens including MRSA.

8.
Front Microbiol ; 7: 1092, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471499

RESUMO

The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

9.
Genom Data ; 10: 144-150, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27872816

RESUMO

BACKGROUND: North-east region of India has consistent role in the spread of multi drug resistant Plasmodium (P.) falciparum to other parts of Southeast Asia. After rapid clinical treatment failure of Artemisinin based combination therapy-Sulphadoxine/Pyrimethamine (ACT-SP) chemoprophylaxis, Artemether-Lumefantrine (ACT-AL) combination therapy was introduced in the year 2012 in this region for the treatment of uncomplicated P. falciparum malaria. In a DNA sequencing based polymorphism analysis, seven codons of P. falciparum dihydropteroate synthetase (Pfdhps) gene were screened in a total of 127 P. falciparum isolates collected from Assam, Arunachal Pradesh and Tripura of North-east India during the year 2014 and 2015 to document current sulfadoxine resistant haplotypes. MATERIALS AND METHODS: Sequences were analyzed to rearrange both nucleotide and protein haplotypes. Molecular diversity indices were analyzed in DNA Sequence Polymorphism software (DnaSP) on the basis of Pfdhps gene sequences. Disappearance from selective neutrality was assessed based on the ratio of non-synonomous to synonomous nucleotide substitutions [dN/dS ratio]. Moreover, two-tailed Z test was performed in search of the significance for probability of rejecting null hypothesis of strict neutrality [dN = dS]. Presence of mutant P. falciparum multidrug resistance protein1 (Pfmdr1) was also checked in those isolates that were present with new Pfdhps haplotypes. Phylogenetic relationship based on Pfdhps gene was reconstructed in Molecular Evolutionary Genetics Analysis (MEGA). RESULTS: Among eight different sulfadoxine resistant haplotypes found, IS GNG A haplotype was documented in a total of five isolates from Tripura with association of a new mutant M538 R allele. Sequence analysis of Pfmdr1 gene in these five isolates came to notice that not all but only one isolate was mutant at codon 86 (N86 Y ; Y YSND) in the multidrug resistance protein. Molecular diversity based on Pfdhps haplotypes revealed that P. falciparum populations in Assam and Tripura were under balancing selection for sulfadoxine resistant haplotypes but population from Arunachal Pradesh was under positive selection with comparatively high haplotype diversity (h = 0.870). In reconstructed phylogenetic analysis, isolates having IS GNG A haplotype were grouped into two separate sub-clusters from the other isolates based on their genetic distances and diversities. CONCLUSION: This study suggests that sulfadoxine resistant isolates are still migrating from its epicenter to the other parts of Southeast Asia and hence control and elimination of the drug resistant isolates have become impedimental. Moreover, P. falciparum populations in different areas may undergo selection of particular sulfadoxine resistant haplotypes either in the presence of drug or after its removal to maintain their plasticity.

10.
Appl Biochem Biotechnol ; 178(3): 513-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490377

RESUMO

Insulin plant (Costus pictus D. Don) is an economically important medicinal plant for the content of its high value secondary metabolites, bioactive compounds, and remarkable flowering features. MicroRNAs are a class of short (∼21 nucleotides), endogenous, noncoding RNA molecules that play a vital role in regulating gene expression. Here, we used a computer-based homology approach to identify conserved miRNAs in Transcribed Sequence Assemblies (TSA) of C. pictus. It led us to identify 42 miRNAs of 13 different families in C. pictus for the first time. Using quantitative polymerase chain reaction (qPCR) assays, we further confirmed the expression of 8 miRNAs (miR394, miR159b, miR166k, miR172, miR159f, miR166, miR144, and miR858) in young and mature leaf tissues. A total of 109 potential target genes of the identified miRNAs were subsequently predicted in rice (Oryza sativa L.) genome. The target genes encode transcription factors, enzymes, and various functional proteins involved in the regulation of several metabolic pathways. The findings in the present study lay the foundation for further research on miRNAs and miRNA-mediated gene regulation in this important medicinal plant.


Assuntos
Costus/genética , MicroRNAs/genética , Expressão Gênica , Folhas de Planta/genética
11.
Springerplus ; 3: 700, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26034690

RESUMO

Forest ecosystem harbour a large number of biotic components where cellulolytic microorganisms participate actively in the biotransformation of dead and decaying organic matter and soil nutrient cycling. This study explores the aerobic culturable cellulolytic microorganisms in the forest soils of North East India. Soil samples rich in dead and decaying organic matter were collected from eight conserved forests during the season when microbes were found to be most active. Cellulolytic microorganisms were isolated using selective media in which cellulose was the sole carbon source. Population of culturable, aerobic, cellulolytic microorganisms were found to be higher at the incubation temperature that corresponds to the natural ambient temperature of the site of sample collection. Bacterial population was higher in all of the sites than fungal population. Bacterial population ranged from 1.91 × 10(5) to 3.35 × 10(6) CFU g(-1) dry soil while actinomycetes and fungal population ranged from 9.13 × 10(2) to 3.46 × 10(4) CFU g(-1) dry soil and 9.36 × 10(2) to 4.31 × 10(4) CFU g(-1) dry soil, respectively. It was observed that though many isolates showed activity on the CMC plate assay, very few isolates showed significant filter paper activity. Three cellulolytic fungal isolates showing high FPase activity were characterised, identified and submitted to GenBank as Talaromyces verruculosus SGMNPf3 (KC937053), Trichoderma gamsii SGSPf7 (KC937055) and Trichoderma atroviride SGBMf4 (KC937054).

12.
PLoS One ; 9(3): e92318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651577

RESUMO

Vermiwash (VW), a liquid extract obtained from vermicomposting beds, is used as an organic fertilizer for crop plants. The current study investigated the effect of a vermiwash foliar spray on the response of bhut jolokia (Capsicum assamicum) exposed to two different arbuscular mycorrhizal fungi (AMF: Rhizophagus irregularis, RI and G. mosseae, GM) in acidic soil under naturally ventilated greenhouse conditions. The VW spray significantly influenced the growth of plants receiving the dual treatment of AMF+VW. Plant growth was more prominent in the GM+VW treatment group than that in the RI+VW treatment group. The plant-AMF interactions in relation to growth and nutrient requirements were also significantly influenced by the application of VW. Interestingly, the VW treatment appeared to contribute more N to plants when compared to that under the AMF treatment, which led to changes in the C:N:P stoichiometry in plant shoots. Furthermore, the increased potassium dependency, as observed in the case of the dual treatments, suggests the significance of such treatments for improving crop conditions under salt stress. Overall, our study shows that the VW foliar spray modifies the response of a crop to inoculations of different AMF with regard to growth and nutrient utilization, which has implications for the selection of an efficient combination of nutrient source for improving crop growth.


Assuntos
Capsicum/metabolismo , Capsicum/microbiologia , Micorrizas/fisiologia , Oligoquetos/fisiologia , Folhas de Planta/fisiologia , Animais , Carbono/metabolismo , Contagem de Colônia Microbiana , Micorrizas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Solo , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento
13.
N Biotechnol ; 29(3): 332-44, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22044601

RESUMO

We determined the fatty acid compositions of six species of freshwater microalgae belonging to the Chlorophyta, which were isolated from freshwater bodies in Assam, India. All six microalgae -Desmodesmus sp. DRLMA7, Desmodesmus elegans DRLMA13, Scenedesmus sp. DRLMA5, Scenedesmus sp. DRLMA9 Chlorella sp. DRLMA3 and Chlorococcum macrostigmatum DRLMA12-showed similar fatty acid profiles 16:0, 16:4, 18:1, 18:2, and 18:3 as major components. We also compared fatty acid compositions during the late exponential and stationary growth phases of D. elegans DRLMA13 and Scenedesmus sp. DRLMA9 in BG11 medium. We observed enhanced percentages of total saturated and monounsaturated fatty acids with a concomitant decrease in polyunsaturated fatty acid content upon the prolonged cultivation of both microalgae. Distinct morphological features of microalgal isolates were determined by scanning electron microscopic (SEM) studies. An ornamented cell wall was found in D. elegans DRLMA13, which is characteristic of small spineless species of Desmodesmus. The isolated microalgae were further distinguished through analysis of internal transcribed spacer 2 (ITS2) secondary structures and compensatory base changes (CBCs). Analysis of CBCs showed the relatedness of Chlorella sp. DRLMA3 with other Chlorella-like organisms, but it does not belong to the clade comprising Chlorella sensu stricto, which includes Chlorella vulgaris. The CBC count between Scenedesmus sp. DRLMA9 and other species of Scenedesmus provides evidence that this isolate represents a new species.


Assuntos
Biocombustíveis , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA