Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Faraday Discuss ; 229(0): 422-442, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075917

RESUMO

The hydroformylation of 1-hexene with 12 bar of 1 : 1 H2/CO in the presence of the catalytic system [Rh(acac)(CO)2]/PPh3 was successfully studied by real-time multinuclear high-resolution FlowNMR spectroscopy at 50 °C. Quantitative reaction progress curves that yield rates as well as chemo- and regioselectivities have been obtained with varying P/Rh loadings. Dissolved H2 can be monitored in solution to ensure true operando conditions without gas limitation. 31P{1H} and selective excitation 1H pulse sequences have been periodically interleaved with 1H FlowNMR measurements to detect Rh-phosphine intermediates during the catalysis. Stopped-flow experiments in combination with diffusion measurements and 2D heteronuclear correlation experiments showed the known tris-phosphine complex [RhH(CO)(PPh3)3] to generate rapidly exchanging isomers of the bis-phosphine complex [Rh(CO)2(PPh3)2] under CO pressure that directly enter the catalytic cycle. A new mono-phosphine acyl complex has been identified as an in-cycle reaction intermediate.

2.
Inorg Chem ; 60(14): 10323-10339, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34197094

RESUMO

We report a series of seven cationic heteroleptic copper(I) complexes of the form [Cu(P^P)(dmphen)]BF4, where dmphen is 2,9-dimethyl-1,10-phenanthroline and P^P is a diphosphine chelate, in which the effect of the bite angle of the diphosphine ligand on the photophysical properties of the complexes was studied. Several of the complexes exhibit moderately high photoluminescence quantum yields in the solid state, with ΦPL of up to 35%, and in solution, with ΦPL of up to 98%. We were able to correlate the powder photoluminescence quantum yields with the % Vbur of the P^P ligand. The most emissive complexes were used to fabricate both organic light-emitting diodes and light-emitting electrochemical cells (LECs), both of which showed moderate performance. Compared to the benchmark copper(I)-based LECs, [Cu(dnbp)(DPEPhos)]+ (maximum external quantum efficiency, EQEmax = 16%), complex 3 (EQEmax = 1.85%) showed a much longer device lifetime (t1/2 = 1.25 h and >16.5 h for [Cu(dnbp)(DPEPhos)]+ and complex 3, respectively). The electrochemiluminescence (ECL) properties of several complexes were also studied, which, to the best of our knowledge, constitutes the first ECL study for heteroleptic copper(I) complexes. Notably, complexes exhibiting more reversible electrochemistry were associated with higher annihilation ECL as well as better performance in a LEC.

3.
Chem Soc Rev ; 49(17): 6273-6328, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32729851

RESUMO

Reductive aminations constitute an important class of reactions widely applied in research laboratories and industries for the synthesis of amines as well as pharmaceuticals, agrochemicals and biomolecules. In particular, catalytic reductive aminations using molecular hydrogen are highly valued and essential for the cost-effective and sustainable production of different kinds of amines and their functionalization. These reactions couple easily accessible carbonyl compounds (aldehydes or ketones) with ammonia, amines or nitro compounds in the presence of suitable catalysts and hydrogen that enable the preparation of linear and branched primary, secondary and tertiary amines including N-methylamines and molecules used in life science applications. In general, amines represent valuable fine and bulk chemicals, which serve as key precursors and central intermediates for the synthesis of advanced chemicals, life science molecules, dyes and polymers. Noteworthily, amine functionalities are present in a large number of pharmaceuticals, agrochemicals and biomolecules, and play vital roles in the function of these active compounds. In general, reductive aminations are challenging processes, especially for the syntheses of primary amines, which often are non-selective and suffer from over-alkylation and reduction of carbonyl compounds to the corresponding alcohols. Hence, the development of suitable catalysts to perform these reactions in a highly efficient and selective manner is crucial and continues to be important and attracts scientific interest. In this regard, both homogeneous and heterogeneous catalysts have successfully been developed for these reactions to access various amines. There is a need for a comprehensive review on catalytic reductive aminations to discuss the potential catalysts used and applicability of this methodology in the preparation of different kinds of amines, which are of commercial, industrial and medicinal importance. Consequently, in this review we discuss catalytic reductive aminations using molecular hydrogen and their applications in the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic primary, secondary and tertiary amines as well as N-methylamines and more complex drug targets. In addition, mechanisms of reductive aminations including selective formation of desired amine products as well as possible side reactions are emphasized. This review aims at the scientific communities working in the fields of organic synthesis, catalysis, and medicinal and biological chemistry.


Assuntos
Aminas/síntese química , Hidrogênio/química , Aminação , Humanos
4.
J Org Chem ; 85(22): 14537-14544, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32924488

RESUMO

A convenient synthesis of enantiopure P-chirogenic diphosphazanes incorporating bulky bisphenol and 1,1'-bi-2-naphthol-derived substituents via the functionalization of a readily accessible enantiopure lithium phosphinoamide with chlorophosphoridites was developed. Since the product requires no subsequent deprotection, the protocol provides an easy, convenient synthesis of P-chirogenic ligands on the gram scale. The ligands were applied in the Rh-catalyzed asymmetric hydrogenation of benchmark substrates furnishing enantiomeric excess values up to 96%.

5.
Angew Chem Int Ed Engl ; 59(50): 22441-22445, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32964582

RESUMO

Amides are one of the most ubiquitous functional groups in synthetic and medicinal chemistry. Novel and rapid synthesis of amides remains in high demand. In this communication, a general and efficient procedure for branch-selective hydroamidation of vinylarenes with hydroxyamine derivatives enabled by copper catalysis has been developed for the first time. The reaction proceeds under mild conditions and tolerates a broad range of functional groups. Applying a chiral phosphine ligand, an enantioselective variant of this transformation was achieved, affording a variety of chiral α-amides with excellent enantioselectivities (up to 99 % ee) and high yields.

6.
Angew Chem Int Ed Engl ; 59(26): 10451-10455, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32212367

RESUMO

The borocarbonylative coupling of unactivated alkenes with alkyl halides remains a challenge. In this communication, a Cu-catalyzed borocarbonylative coupling of unactivated alkenes with alkyl halides for the synthesis of ß-boryl ketones has been developed. A broad range of ß-boryl ketone derivatives was prepared in moderate to excellent yields with complete regioselectivity.

7.
Chemistry ; 25(67): 15341-15350, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31495988

RESUMO

In contrast to their symmetrical analogues, nonsymmetrical PNP-type ligand motifs have been less investigated despite the modular pincer structure. However, the introduction of mixed phosphorus donor moieties provides access to a larger variety of PNP ligands. Herein, a facile solid-phase synthesis approach towards a diverse PNP-pincer ligand library of 14 members is reported. Contrary to often challenging workup procedures in solution-phase, only simple workup steps are required. The corresponding supported ruthenium-PNP catalysts are screened in ester hydrogenation. Usually, industrially applied heterogeneous catalysts require harsh conditions in this reaction (250-350 °C at 100-200 bar) often leading to reduced selectivities. Heterogenized reusable Ru-PNP catalysts are capable of reducing esters and lactones selectively under mild conditions.

8.
Angew Chem Int Ed Engl ; 58(11): 3486-3490, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30650227

RESUMO

Use of ZrO2 /SiO2 as a solid acid catalyst in the ring-opening of biobased γ-valerolactone with methanol in the gas phase leads to mixtures of methyl 2-, 3-, and 4-pentenoate (MP) in over 95 % selectivity, containing a surprising 81 % of M4P. This process allows the application of a selective hydroformylation to this mixture to convert M4P into methyl 5-formyl-valerate (M5FV) with 90 % selectivity. The other isomers remain unreacted. Reductive amination of M5FV and ring-closure to ϵ-caprolactam in excellent yield had been reported before. The remaining mixture of 2- and 3-MP was subjected to an isomerising methoxycarbonylation to dimethyl adipate in 91 % yield.

9.
Chemistry ; 24(41): 10531-10540, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29786906

RESUMO

A dimethylxanthene-based phosphine/borane frustrated Lewis pair (FLP) is shown to effect reversible C-H activation, cleaving phenylacetylene, PhCCH, to give an equilibrium mixture of the free FLP and phosphonium acetylide in CD2 Cl2 solution at room temperature. This system also reacts with B-H bonds although in a different fashion: reactions with HBpin and HBcat proceed via C-B/B-H metathesis, leading to replacement of the -B(C6 F5 )2 Lewis acid component by -Bpin/-Bcat, and transfer of HB(C6 F5 )2 to the phosphine Lewis base. This transformation underpins the ability of the FLP to catalyze the hydroboration of alkynes by HBpin: the active species is derived from the HB(C6 F5 )2 fragment generated in this exchange process.

10.
Org Biomol Chem ; 16(11): 1976-1982, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29498726

RESUMO

The fate of most lignin linkages, other than the ß-O-4, under selective oxidation conditions is largely unknown. In this work we use advanced ß-5 lignin model compounds to identify the fate of phenylcoumaran units in a softwood lignin during oxidation with DDQ. By using model compounds combined with detailed characterisation of the oxidised lignin polymer using HSQC and HMBC NMR we show that phenylcoumarones are a major product, and therefore constitute a novel non-native ß-5 linkage in oxidised lignins. Additionally, the reactivity of these units in lignin led us to further investigate their connectivity in lignin, showing that they are found as both phenolic and etherified units. The findings and approach developed here will help improve the efficiency of selective oxidative lignin depolymerisation processes, particularly those aimed at the upgrading of softwood lignin in which phenylcoumarans are a major linkage.

11.
Angew Chem Int Ed Engl ; 56(44): 13596-13600, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28841767

RESUMO

Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein-binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.


Assuntos
Aldeídos/química , Materiais Biomiméticos/química , Metaloproteínas/química , Proteína Multifuncional do Peroxissomo-2/química , Fosfinas/química , Ródio/química , Catálise , Humanos , Modelos Moleculares
12.
J Am Chem Soc ; 138(28): 8900-11, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27310182

RESUMO

The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (ß-O-4)-(ß-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected ß-O-4, ß-5, and ß-ß structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.


Assuntos
Lignina/química , Solventes/química , Acetais/química , Catálise , Dimerização , Formaldeído/química , Concentração de Íons de Hidrogênio , Polimerização
13.
Bioorg Med Chem ; 22(20): 5657-77, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25126712

RESUMO

Oxidation reactions are an important part of the synthetic organic chemist's toolkit and continued advancements have, in many cases, resulted in high yields and selectivities. This review aims to give an overview of the current state-of-the-art in oxygenation reactions using both chemical and enzymatic processes, the design principles applied to date and a possible future in the direction of hybrid catalysts combining the best of chemical and natural design.


Assuntos
Metaloproteínas/química , Permanganato de Potássio/química , Catálise , Metaloproteínas/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução
14.
Chemistry ; 17(17): 4680-98, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21480401

RESUMO

Many bioinspired transition-metal catalysts have been developed over the recent years. In this review the progress in the design and application of ligand systems based on peptides and DNA and the development of artificial metalloenzymes are reviewed with a particular emphasis on the combination of phosphane ligands with powerful molecular recognition and shape selectivity of biomolecules. The various approaches for the assembly of these catalytic systems will be highlighted, and the possibilities that the use of the building blocks of Nature provide for catalyst optimisation strategies are discussed.


Assuntos
DNA Catalítico/química , Metaloproteínas/química , Peptídeos/química , Elementos de Transição/química , Catálise , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Estereoisomerismo
15.
Microb Biotechnol ; 14(5): 2140-2151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310858

RESUMO

Fungal laccases are attracting enzymes for sustainable valorization of biorefinery lignins. To improve the lignin oxidation capacity of two previously characterized laccase isoenzymes from the white-rot fungus Obba rivulosa, we mutated their substrate-binding site at T1. As a result, the pH optimum of the recombinantly produced laccase variant rOrLcc2-D206N shifted by three units towards neutral pH. O. rivulosa laccase variants with redox mediators oxidized both the dimeric lignin model compound and biorefinery poplar lignin. Significant structural changes, such as selective benzylic α-oxidation, were detected by nuclear magnetic resonance analysis, although no polymerization of lignin was observed by gel permeation chromatography. This suggests that especially rOrLcc2-D206N is a promising candidate for lignin-related applications.


Assuntos
Lacase , Polyporales , Fungos/metabolismo , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Oxirredução , Polyporales/metabolismo
16.
ChemSusChem ; 13(17): 4238-4265, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510817

RESUMO

The development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer. This aids the development of catalytic methodologies and in-depth mechanistic studies and guides structural characterization studies in the lignin field. However, due to the volume of literature and the piecemeal publication of methodology, the choice of suitable lignin model compounds is far from straight forward, especially for those outside the field and lacking a background in organic synthesis. For example, in catalytic depolymerization studies, a balance between synthetic effort and fidelity compared to the actual lignin of interest needs to be found. In this Review, we provide a broad overview of the model compounds available to study the chemistry of the main native linking motifs typically found in lignins from woody biomass, the synthetic routes and effort required to access them, and discuss to what extent these represent actual lignin structures. This overview can aid researchers in their selection of the most suitable lignin model systems for the development of emerging lignin modification and depolymerization technologies, maximizing their chances of successfully developing novel lignin valorization strategies.

17.
Chem Sci ; 11(11): 2973-2981, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34122798

RESUMO

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N'-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.

18.
Chem Sci ; 10(35): 8195-8201, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31857885

RESUMO

The selective catalytic hydrogenation of nitriles represents an important but challenging transformation for many homogeneous and heterogeneous catalysts. Herein, we report the efficient and modular solid-phase synthesis of immobilized Triphos-type ligands in very high yields, involving only minimal work-up procedures. The corresponding supported ruthenium-Triphos catalysts are tested in the hydrogenation of various nitriles. Under mild conditions and without the requirement of additives, the tunable supported catalyst library provides selective access to both primary amines and secondary imines. Moreover, the first application of a Triphos-type catalyst in a continuous flow process is presented demonstrating high catalyst life-time over at least 195 hours without significant activity loss.

19.
Org Lett ; 10(5): 989-92, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18237183

RESUMO

Various routes for the synthesis of polymer-bound phosphites and phosphoramidites have been investigated. In the presence of a suitable activator the supported phosphoramidites react cleanly with alcohols to give the corresponding monodentate phosphite ligands in solution. We have applied this novel solid-phase route in the parallel synthesis of several monodentate chiral and achiral phosphite ligands.


Assuntos
Técnicas de Química Combinatória , Compostos Organofosforados/síntese química , Fosfitos/síntese química , Catálise , Ligantes , Estrutura Molecular , Compostos Organofosforados/química , Fosfitos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA