Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Mol Cell Cardiol ; 162: 1-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487755

RESUMO

Diabetes doubles the risk of developing heart failure (HF). As the prevalence of diabetes grows, so will HF unless the mechanisms connecting these diseases can be identified. Methylglyoxal (MG) is a glycolysis by-product that forms irreversible modifications on lysine and arginine, called glycation. We previously found that myofilament MG glycation causes sarcomere contractile dysfunction and is increased in patients with diabetes and HF. The aim of this study was to discover the molecular mechanisms by which MG glycation of myofilament proteins cause sarcomere dysfunction and to identify therapeutic avenues to compensate. In humans with type 2 diabetes without HF, we found increased glycation of sarcomeric actin compared to non-diabetics and it correlated with decreased calcium sensitivity. Depressed calcium sensitivity is pathogenic for HF, therefore myofilament glycation represents a promising therapeutic target to inhibit the development of HF in diabetics. To identify possible therapeutic targets, we further defined the molecular actions of myofilament glycation. Skinned myocytes exposed to 100 µM MG exhibited decreased calcium sensitivity, maximal calcium-activated force, and crossbridge kinetics. Replicating MG's functional affects using a computer simulation of sarcomere function predicted simultaneous decreases in tropomyosin's blocked-to-closed rate transition and crossbridge duty cycle were consistent with all experimental findings. Stopped-flow experiments and ATPase activity confirmed MG decreased the blocked-to-closed transition rate. Currently, no therapeutics target tropomyosin, so as proof-of-principal, we used a n-terminal peptide of myosin-binding protein C, previously shown to alter tropomyosin's position on actin. C0C2 completely rescued MG-induced calcium desensitization, suggesting a possible treatment for diabetic HF.


Assuntos
Diabetes Mellitus Tipo 2 , Tropomiosina , Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Miofibrilas/metabolismo , Tropomiosina/metabolismo
2.
Chin J Physiol ; 64(2): 72-79, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938817

RESUMO

Long-term deprivation of female sex hormones has been shown to mediate accumulation of damaged mitochondria in ventricular muscle leading to cardiovascular dysfunction. Therefore, the roles of female sex hormones in mitochondrial quality control are closely focused. In the present study, depletion of female sex hormones impairing mitochondrial autophagy in the heart was hypothesized. Cardiac mitophagy was therefore investigated in the heart of 10-week ovariectomized (OVX) and sham-operated (SHAM) rats. By using isolated mitochondria preparation, results demonstrated an increase in mitochondrial PTEN-induced kinase 1 accumulation in the sample of OVX rats indicating mitochondrial outer membrane dysfunction. However, no change in p62 and LC3-II translocation to mitochondria was observed between two groups indicating unresponsiveness of mitophagosome formation in the OVX rat heart. This loss might be resulted from significant decreases in Parkin and Bcl2l13 expression, but not Bnip3 activation. In summary, results suggest that mitochondrial abnormality in the heart after deprivation of female sex hormones could consequently be due to desensitization of mitophagy process.


Assuntos
Mitocôndrias , Mitofagia , Animais , Autofagia , Feminino , Hormônios Esteroides Gonadais , Coração , Ratos
3.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R829-R842, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159365

RESUMO

Cardiac inflammation has been proposed as one of the primary mechanisms of anthracycline-induced acute cardiotoxicity. A reduction in cardiac inflammation might also reduce cardiotoxicity. This study aimed to evaluate the potential of estrogen therapy and regular exercise on attenuating cardiac inflammation in the context of doxorubicin-induced cardiomyopathy. Ovariectomized rats were randomly allocated into estrogen supplementation, exercise training, and mast cell stabilizer treatment groups. Eight weeks after ovariectomy, rats received six cumulative doses of doxorubicin for two weeks. Echocardiography demonstrated a progressive decrease in ejection fraction in doxorubicin-treated rats without hypertrophic effect. This systolic defect was completely prevented by either estrogen supplementation or mast cell stabilizer treatment but not by regular exercise. As a heart disease indicator, increased ß-myosin heavy chain expression induced by doxorubicin could only be prevented by estrogen supplementation. Decrease in shortening and intracellular Ca2+ transients of cardiomyocytes were due to absence of female sex hormones without further effects of doxorubicin. Again, estrogen supplementation and mast cell stabilizer treatment prevented these changes but exercise training did not. Histological analysis indicated that the hyperactivation of cardiac mast cells in ovariectomized rats was augmented by doxorubicin. Estrogen supplementation and mast cell stabilizer treatment completely prevented both increases in mast cell density and degranulation, whereas exercise training partially attenuated the hyperactivation. Our results, therefore, suggest that estrogen supplementation acts similarly to mast cell stabilizers in attenuating the effects of doxorubicin. Ineffectiveness of regular exercise in preventing the acute cardiotoxicity of doxorubicin might be due to a lesser effect on preventing cardiac inflammation.


Assuntos
Degranulação Celular/efeitos dos fármacos , Doxorrubicina , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Terapia por Exercício , Mastócitos/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiotoxicidade , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Mastócitos/metabolismo , Mastócitos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
4.
Pharmaceutics ; 14(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890404

RESUMO

We recently established a large animal model that recapitulates key clinical features of heart failure with preserved ejection fraction (HFpEF) and tested the effects of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). SAHA reversed and prevented the development of cardiopulmonary impairment. This study evaluated the effects of SAHA at the level of cardiomyocyte and contractile protein function to understand how it modulates cardiac function. Both isolated adult feline ventricular cardiomyocytes (AFVM) and left ventricle (LV) trabeculae isolated from non-failing donors were treated with SAHA or vehicle before recording functional data. Skinned myocytes were isolated from AFVM and human trabeculae to assess myofilament function. SAHA-treated AFVM had increased contractility and improved relaxation kinetics but no difference in peak calcium transients, with increased calcium sensitivity and decreased passive stiffness of myofilaments. Mass spectrometry analysis revealed increased acetylation of the myosin regulatory light chain with SAHA treatment. SAHA-treated human trabeculae had decreased diastolic tension and increased developed force. Myofilaments isolated from human trabeculae had increased calcium sensitivity and decreased passive stiffness. These findings suggest that SAHA has an important role in the direct control of cardiac function at the level of the cardiomyocyte and myofilament by increasing myofilament calcium sensitivity and reducing diastolic tension.

5.
J Am Heart Assoc ; 9(9): e015611, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32319345

RESUMO

Background Approximately 1 in 6 adolescents report regular binge alcohol consumption, and we hypothesize it affects heart growth during this period. Methods and Results Adolescent, genetically diverse, male Wistar rats were gavaged with water or ethanol once per day for 6 days. In vivo structure and function were assessed before and after exposure. Binge alcohol exposure in adolescence significantly impaired normal cardiac growth but did not affect whole-body growth during adolescence, therefore this pathology was specific to the heart. Binge rats also exhibited signs of accelerated pathological growth (concentric cellular hypertrophy and thickening of the myocardial wall), suggesting a global reorientation from physiologic to pathologic growth. Binge rats compensated for their smaller filling volumes by increasing systolic function and sympathetic stimulation. Consequently, binge alcohol exposure increased PKA (protein kinase A) phosphorylation of troponin I, inducing myofilament calcium desensitization. Binge alcohol also impaired in vivo relaxation and increased titin-based cellular stiffness due to titin phosphorylation by PKCα (protein kinase C α). Mechanistically, alcohol inhibited extracellular signal-related kinase activity, a nodal signaling kinase activating physiology hypertrophy. Thus, binge alcohol exposure depressed genes involved in growth. These cardiac structural alterations from binge alcohol exposure persisted through adolescence even after cessation of ethanol exposure. Conclusions Alcohol negatively impacts function in the adult heart, but the adolescent heart is substantially more sensitive to its effects. This difference is likely because adolescent binge alcohol impedes the normal rapid physiological growth and reorients it towards pathological hypertrophy. Many adolescents regularly binge alcohol, and here we report a novel pathological consequence as well as mechanisms involved.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Cardiomegalia/etiologia , Coração/crescimento & desenvolvimento , Miocárdio/patologia , Adaptação Fisiológica , Fatores Etários , Animais , Sinalização do Cálcio , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Conectina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Miocárdio/enzimologia , Fosforilação , Proteína Quinase C-alfa/metabolismo , Ratos Wistar , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA