Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 78(2): 346-358.e9, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32268123

RESUMO

CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.


Assuntos
Proteínas Amiloidogênicas/genética , Diferenciação Celular/genética , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Ácido Glutâmico/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/genética , Expansão das Repetições de Trinucleotídeos/genética
2.
Trends Biochem Sci ; 48(3): 216-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36280494

RESUMO

Aggrephagy describes the selective lysosomal transport and turnover of cytoplasmic protein aggregates by macro-autophagy. In this process, protein aggregates and conglomerates are polyubiquitinated and then sequestered by autophagosomes. Soluble selective autophagy receptors (SARs) are central to aggrephagy and physically bind to both ubiquitin and the autophagy machinery, thus linking the cargo to the forming autophagosomal membrane. Because the accumulation of protein aggregates is associated with cytotoxicity in several diseases, a better molecular understanding of aggrephagy might provide a conceptual framework to develop therapeutic strategies aimed at delaying the onset of these pathologies by preventing the buildup of potentially toxic aggregates. We review recent advances in our knowledge about the mechanism of aggrephagy.


Assuntos
Autofagia , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Autofagossomos , Lisossomos/metabolismo
3.
Mol Cell ; 69(2): 214-226, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351843

RESUMO

Both acute proteotoxic stresses that unfold proteins and expression of disease-causing mutant proteins that expose aggregation-prone regions can promote protein aggregation. Protein aggregates can interfere with cellular processes and deplete factors crucial for protein homeostasis. To cope with these challenges, cells are equipped with diverse folding and degradation activities to rescue or eliminate aggregated proteins. Here, we review the different chaperone disaggregation machines and their mechanisms of action. In all these machines, the coating of protein aggregates by Hsp70 chaperones represents the conserved, initializing step. In bacteria, fungi, and plants, Hsp70 recruits and activates Hsp100 disaggregases to extract aggregated proteins. In the cytosol of metazoa, Hsp70 is empowered by a specific cast of J-protein and Hsp110 co-chaperones allowing for standalone disaggregation activity. Both types of disaggregation machines are supported by small Hsps that sequester misfolded proteins.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Agregados Proteicos/fisiologia , Citosol/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Desdobramento de Proteína , Proteólise
4.
Mol Cell ; 71(5): 675-688.e6, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193095

RESUMO

Self-propagating, amyloidogenic mutant huntingtin (mHTT) aggregates may drive progression of Huntington's disease (HD). Here, we report the development of a FRET-based mHTT aggregate seeding (FRASE) assay that enables the quantification of mHTT seeding activity (HSA) in complex biosamples from HD patients and disease models. Application of the FRASE assay revealed HSA in brain homogenates of presymptomatic HD transgenic and knockin mice and its progressive increase with phenotypic changes, suggesting that HSA quantitatively tracks disease progression. Biochemical investigations of mouse brain homogenates demonstrated that small, rather than large, mHTT structures are responsible for the HSA measured in FRASE assays. Finally, we assessed the neurotoxicity of mHTT seeds in an inducible Drosophila model transgenic for HTTex1. We found a strong correlation between the HSA measured in adult neurons and the increased mortality of transgenic HD flies, indicating that FRASE assays detect disease-relevant, neurotoxic, mHTT structures with severe phenotypic consequences in vivo.


Assuntos
Biomarcadores/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Drosophila/genética , Drosophila/metabolismo , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
5.
Mol Cell ; 62(2): 272-283, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27151442

RESUMO

Expanded CAG repeats lead to debilitating neurodegenerative disorders characterized by aggregation of proteins with expanded polyglutamine (polyQ) tracts. The mechanism of aggregation involves primary and secondary nucleation steps. We show how a noncanonical member of the DNAJ-chaperone family, DNAJB6, inhibits the conversion of soluble polyQ peptides into amyloid fibrils, in particular by suppressing primary nucleation. This inhibition is mediated by a serine/threonine-rich region that provides an array of surface-exposed hydroxyl groups that bind to polyQ peptides and may disrupt the formation of the H bonds essential for the stability of amyloid fibrils. Early prevention of polyQ aggregation by DNAJB6 occurs also in cells and leads to delayed neurite retraction even before aggregates are visible. In a mouse model, brain-specific coexpression of DNAJB6 delays polyQ aggregation, relieves symptoms, and prolongs lifespan, pointing to DNAJB6 as a potential target for disease therapy and tool for unraveling early events in the onset of polyQ diseases.

6.
Hum Mol Genet ; 30(11): 996-1005, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33822053

RESUMO

FOXO1, a transcription factor downstream of the insulin/insulin like growth factor axis, has been linked to protein degradation. Elevated expression of FOXO orthologs can also prevent the aggregation of cytosine adenine guanine (CAG)-repeat disease causing polyglutamine (polyQ) proteins but whether FOXO1 targets mutant proteins for degradation is unclear. Here, we show that increased expression of FOXO1 prevents toxic polyQ aggregation in human cells while reducing FOXO1 levels has the opposite effect and accelerates it. Although FOXO1 indeed stimulates autophagy, its effect on polyQ aggregation is independent of autophagy, ubiquitin-proteasome system (UPS) mediated protein degradation and is not due to a change in mutant polyQ protein turnover. Instead, FOXO1 specifically downregulates protein synthesis rates from expanded pathogenic CAG repeat transcripts. FOXO1 orchestrates a change in the composition of proteins that occupy mutant expanded CAG transcripts, including the recruitment of IGF2BP3. This mRNA binding protein enables a FOXO1 driven decrease in pathogenic expanded CAG transcript- and protein levels, thereby reducing the initiation of amyloidogenesis. Our data thus demonstrate that FOXO1 not only preserves protein homeostasis at multiple levels, but also reduces the accumulation of aberrant RNA species that may co-contribute to the toxicity in CAG-repeat diseases.


Assuntos
Proteína Forkhead Box O1/genética , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Proteínas de Ligação a RNA/genética , Adenina/metabolismo , Proteínas Amiloidogênicas , Autofagia/genética , Citosina/metabolismo , Proteína Forkhead Box O1/biossíntese , Regulação da Expressão Gênica/genética , Guanina/metabolismo , Células HEK293 , Humanos , Proteínas Mutantes/genética , Peptídeos/toxicidade , Agregação Patológica de Proteínas/patologia , Biossíntese de Proteínas/genética , Proteólise , RNA Mensageiro/genética , Repetições de Trinucleotídeos/genética
7.
J Cell Sci ; 134(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674449

RESUMO

Disturbances to protein homeostasis (proteostasis) can lead to protein aggregation and inclusion formation, processes associated with a variety of neurodegenerative disorders. DNAJB proteins are molecular chaperones that have been identified as potent suppressors of disease-related protein aggregation. In this work, a destabilised isoform of firefly luciferase (R188Q/R261Q Fluc; termed FlucDM) was overexpressed in cells to assess the capacity of DNAJBs to inhibit inclusion formation. Co-expression of all DNAJB proteins tested significantly inhibited the intracellular aggregation of FlucDM. Moreover, we show that DNAJB proteins suppress aggregation by supporting the Hsp70 (HSPA)-dependent degradation of FlucDM via the proteasome. The serine-rich stretch in DNAJB6 and DNAJB8, essential for preventing fibrillar aggregation, is not involved in the suppression of FlucDM inclusion formation. Conversely, deletion of the C-terminal TTK-LKS motif in DNAJB6 and DNAJB8, a region not required to suppress polyglutamine aggregation, abolished the ability to inhibit inclusion formation by FlucDM. Thus, our data suggest that DNAJB6 and DNAJB8 possess two distinct regions for binding substrates, one that is responsible for binding ß-hairpins that form during amyloid formation and another that interacts with exposed hydrophobic patches in aggregation-prone clients. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Choque Térmico HSP40 , Agregados Proteicos , Amiloide/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteostase
8.
J Cell Sci ; 134(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350957

RESUMO

The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the endoplasmic reticulum (ER) exit sites under the stress of amino acid starvation. Here, we address which signaling pathways cause Sec body formation and find that two pathways are critical. The first is the activation of the salt-inducible kinases (SIKs; SIK2 and SIK3) by Na+ stress, which, when it is strong, is sufficient. The second is activation of IRE1 and PERK (also known as PEK in flies) downstream of ER stress induced by the absence of amino acids, which needs to be combined with moderate salt stress to induce Sec body formation. SIK, and IRE1 and PERK activation appear to potentiate each other through the stimulation of the unfolded protein response, a key parameter in Sec body formation. This work shows the role of SIKs in phase transition and re-enforces the role of IRE1 and PERK as a metabolic sensor for the level of circulating amino acids and salt. This article has an associated First Person interview with the first author of the paper.


Assuntos
Drosophila , eIF-2 Quinase , Animais , Drosophila/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
9.
Ann Neurol ; 89(1): 66-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978817

RESUMO

OBJECTIVE: In spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), the expanded cytosine adenine guanine (CAG) repeat in ATXN3 is the causal mutation, and its length is the main factor in determining the age at onset (AO) of clinical symptoms. However, the contribution of the expanded CAG repeat length to the rate of disease progression after onset has remained a matter of debate, even though an understanding of this factor is crucial for experimental data on disease modifiers and their translation to clinical trials and their design. METHODS: Eighty-two Dutch patients with SCA3/MJD were evaluated annually for 15 years using the International Cooperative Ataxia Rating Scale (ICARS). Using linear growth curve models, ICARS progression rates were calculated and tested for their relation to the length of the CAG repeat expansion and to the residual age at onset (RAO): The difference between the observed AO and the AO predicted on the basis of the CAG repeat length. RESULTS: On average, ICARS scores increased 2.57 points/year of disease. The length of the CAG repeat was positively correlated with a more rapid ICARS progression, explaining 30% of the differences between patients. Combining both the length of the CAG repeat and RAO as comodifiers explained up to 47% of the interpatient variation in ICARS progression. INTERPRETATION: Our data imply that the length of the expanded CAG repeat in ATXN3 is a major determinant of clinical decline, which suggests that CAG-dependent molecular mechanisms similar to those responsible for disease onset also contribute to the rate of disease progression in SCA3/MJD. ANN NEUROL 2021;89:66-73.


Assuntos
Ataxina-3/genética , Progressão da Doença , Doença de Machado-Joseph/genética , Proteínas Repressoras/genética , Ataxias Espinocerebelares/genética , Adenina/metabolismo , Adulto , Citosina/metabolismo , Feminino , Guanina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
10.
Nat Rev Mol Cell Biol ; 11(8): 579-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20651708

RESUMO

Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein-protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Trifosfato de Adenosina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Humanos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 53(5): 685-7, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24606917

RESUMO

In this issue, Gray et al. (2014) elegantly demonstrate how cells utilize an oxidation-regulated pathway that depletes cellular ATP, lowers proteostatic burden, and leads to accumulation of prebiotic, inorganic polyphosphates with chaperone-like activity for stress protection.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Polifosfatos/metabolismo
12.
J Biol Chem ; 295(21): 7301-7316, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284329

RESUMO

Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Homeodomínio/química , Agregação Patológica de Proteínas , Superóxido Dismutase-1/química , Proteínas Supressoras de Tumor/química , Substituição de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação de Sentido Incorreto , Superóxido Dismutase-1/genética , Proteínas Supressoras de Tumor/genética
13.
J Biol Chem ; 294(25): 9985-9994, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31097540

RESUMO

Heat shock protein family B (small) member 7 (HSPB7) is a unique, relatively unexplored member within the family of human small heat shock proteins (HSPBs). Unlike most HSPB family members, HSPB7 does not oligomerize and so far has not been shown to associate with any other member of the HSPB family. Intriguingly, it was found to be the most potent member within the HSPB family to prevent aggregation of proteins with expanded polyglutamine (polyQ) stretches. How HSPB7 suppresses polyQ aggregation has remained elusive so far. Here, using several experimental strategies, including in vitro aggregation assay, immunoblotting and fluorescence approaches, we show that the polyQ aggregation-inhibiting activity of HSPB7 is fully dependent on its flexible N-terminal domain (NTD). We observed that the NTD of HSPB7 is both required for association with and inhibition of polyQ aggregation. Remarkably, replacing the NTD of HSPB1, which itself cannot suppress polyQ aggregation, with the NTD of HSPB7 resulted in a hybrid protein that gained anti-polyQ aggregation activity. The hybrid NTDHSPB7-HSPB1 protein displayed a reduction in oligomer size and, unlike WT HSPB1, associated with polyQ. However, experiments with phospho-mimicking HSPB1 mutants revealed that de-oligomerization of HSPB1 alone does not suffice to gain polyQ aggregation-inhibiting activity. Together, our results reveal that the NTD of HSPB7 is both necessary and sufficient to bind to and suppress the aggregation of polyQ-containing proteins.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeos/química , Agregados Proteicos , Proteínas de Choque Térmico HSP27/química , Humanos , Peptídeos/metabolismo , Ligação Proteica , Proteólise
14.
Neurobiol Dis ; 124: 108-117, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30408590

RESUMO

Several neurodegenerative diseases like Huntington's, a polyglutamine (PolyQ) disease, are initiated by protein aggregation in neurons. Furthermore, these diseases are also associated with a multitude of responses in non-neuronal cells in the brain, in particular glial cells, like astrocytes. These non-neuronal responses have repeatedly been suggested to play a disease-modulating role, but how these may be exploited to delay the progression of neurodegeneration has remained unclear. Interestingly, one of the molecular changes that astrocytes undergo includes the upregulation of certain Heat Shock Proteins (HSPs) that are classically considered to maintain protein homeostasis, thus resulting in cell autonomous protection. Previously, we discovered DNAJB6, a member of the human DNAJ family, as potent cell autonomous suppressor of PolyQ aggregation and related neurodegeneration. Using cell type specific expression systems in D. melanogaster, we show that exclusive expression of DNAJB6 in astrocytes (that do not express PolyQ protein) can delay neurodegeneration and expands lifespan when the PolyQ protein is exclusively expressed in neurons (that do not co-express DNAJB6 themselves). This provides direct evidence for a non-cell autonomous protective role of astrocytes in PolyQ diseases.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Doença de Huntington/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Proteínas de Choque Térmico HSP40/genética , Proteína Huntingtina/metabolismo , Masculino , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/genética , Peptídeos/metabolismo
15.
J Cell Sci ; 129(6): 1260-70, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26818841

RESUMO

The accumulation of ubiquitylated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to a diminished aggregate burden, in terms of disease pathogenesis, the different approaches can have distinct outcomes. Using a novel cell-based assay that can distinguish newly formed versus preformed inclusions, we demonstrate that two proteins previously implicated in the autophagic clearance of expanded polyglutamine inclusions, HspB7 and Alfy (also known as WDFY3), actually affect very distinct cellular processes to affect aggregate burden. Using this cell-based assay, we also establish that constitutive expression of the aggregation-prone protein can measurably slow the elimination of protein aggregates, given that not all aggregates appear to be available for degradation. This new assay can therefore not only determine at what step a modifier might influence aggregate burden, but also can be used to provide new insights into how protein aggregates are targeted for degradation.


Assuntos
Bioquímica/métodos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Membrana/metabolismo , Agregados Proteicos , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Choque Térmico HSP27/genética , Células HeLa , Humanos , Corpos de Inclusão , Proteínas de Membrana/genética , Camundongos , Proteólise , Fatores de Transcrição/genética
16.
Mol Cell ; 37(3): 355-69, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159555

RESUMO

Misfolding and aggregation are associated with cytotoxicity in several protein folding diseases. A large network of molecular chaperones ensures protein quality control. Here, we show that within the Hsp70, Hsp110, and Hsp40 (DNAJ) chaperone families, members of a subclass of the DNAJB family (particularly DNAJB6b and DNAJB8) are superior suppressors of aggregation and toxicity of disease-associated polyglutamine proteins. The antiaggregation activity is largely independent of the N-terminal Hsp70-interacting J-domain. Rather, a C-terminal serine-rich (SSF-SST) region and the C-terminal tail are essential. The SSF-SST region is involved in substrate binding, formation of polydisperse oligomeric complexes, and interaction with histone deacetylases (HDAC4, HDAC6, SIRT2). Inhibiting HDAC4 reduced DNAJB8 function. DNAJB8 is (de)acetylated at two conserved C-terminal lysines that are not involved in substrate binding, but do play a role in suppressing protein aggregation. Combined, our data provide a functional link between HDACs and DNAJs in suppressing cytotoxic protein aggregation.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Histona Desacetilases/fisiologia , Animais , Linhagem Celular , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Resposta ao Choque Térmico , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Peptídeos/metabolismo , Deficiências na Proteostase/metabolismo , Xenopus laevis
17.
Mol Med ; 21(1): 758-768, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26467707

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies.

18.
Brain ; 138(Pt 9): 2537-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169942

RESUMO

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.


Assuntos
Cerebelo/patologia , Dinorfinas/genética , Regulação da Expressão Gênica/genética , Transtornos dos Movimentos/etiologia , Mutação/genética , Células de Purkinje/fisiologia , Degenerações Espinocerebelares , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Contagem de Células , Células Cultivadas , Modelos Animais de Doenças , Dinorfinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Transdução de Sinais/genética , Degenerações Espinocerebelares/complicações , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Sinapses/genética , Sinapses/patologia
20.
Cell Mol Life Sci ; 72(17): 3387-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25854634

RESUMO

The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.


Assuntos
Mutação/genética , Células de Purkinje/metabolismo , Canais de Potássio Shal/metabolismo , Degenerações Espinocerebelares/genética , Análise de Variância , Cicloeximida , Primers do DNA/genética , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Mutagênese Sítio-Dirigida , Canais de Potássio Shal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA