Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 147(6): 1213-1221, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35212693

RESUMO

COVID-19 has caused millions of cases and deaths all over the world since late 2019. Rapid detection of the virus is crucial for controlling its spread through a population. COVID-19 is currently detected by nucleic acid-based tests and serological tests. However, these methods have limitations such as the requirement of high-cost reagents, false negative results and being time consuming. Surface-enhanced Raman scattering (SERS), which is a powerful technique that enhances the Raman signals of molecules using plasmonic nanostructures, can overcome these disadvantages. In this study, we developed a virus-infected cell model and analyzed this model by SERS combined with Principal Component Analysis (PCA). HEK293 cells were transfected with plasmids encoding the nucleocapsid (N), membrane (M) and envelope (E) proteins of SARS-CoV-2 via polyethyleneimine (PEI). Non-plasmid transfected HEK293 cells were used as the control group. Cellular uptake was optimized with green fluorescence protein (GFP) plasmids and evaluated by fluorescence microscopy and flow cytometry. The transfection efficiency was found to be around 60%. The expression of M, N, and E proteins was demonstrated by western blotting. The SERS spectra of the total proteins of transfected cells were obtained using a gold nanoparticle-based SERS substrate. Proteins of the transfected cells have peak positions at 646, 680, 713, 768, 780, 953, 1014, 1046, 1213, 1243, 1424, 2102, and 2124 cm-1. To reveal spectral differences between plasmid transfected cells and non-transfected control cells, PCA was applied to the spectra. The results demonstrated that SERS coupled with PCA might be a favorable and reliable way to develop a rapid, low-cost, and promising technique for the detection of COVID-19.


Assuntos
COVID-19 , Nanopartículas Metálicas , Animais , COVID-19/diagnóstico , Ouro/química , Células HEK293 , Humanos , Nanopartículas Metálicas/química , Análise Multivariada , SARS-CoV-2/genética , Análise Espectral Raman/métodos
2.
Methods Mol Biol ; 2434: 117-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213013

RESUMO

Nanomaterials have aroused attention in the recent years for their high potential for gene delivery applications. Most of the nanoformulations used in gene delivery are positively charged to carry negatively charged oligonucleotides. However, excessive positively charged carriers are cytotoxic. Therefore, the complexed oligonucleotide/nanoparticles should be well-examined before the application. In that manner, agarose gel electrophoresis, which is a basic method utilized for separation, identification, and purification of nucleic acid molecules because of its poriferous nature, is one of the strategies to determine the most efficient complexation rate. When the electric field is applied, RNA fragments can migrate through anode due to the negatively charged phosphate backbone. Because RNA has a uniform mass/charge ratio, RNA molecules run in agarose gel proportional according to their size and molecular weight. In this chapter, the determination of complexation efficiency between cationic polymer carriers and small interfering RNA (siRNA) cargos by using agarose gel electrophoresis is described. siRNA/cationic polymer carrier complexes are placed in an electric field and the charged molecules move through the counter-charged electrodes due to the phenomenon of electrostatic attraction. Nucleic acid cargos are loaded to cationic carriers via the electrostatic interaction between positively charged amine groups (N) of the carrier and negatively charged phosphate groups (P) of RNA. The N/P ratio determines the loading efficiency of the cationic polymer carrier. In here, the determination of N/P ratio, where the most efficient complexation occurs, by exposure to the electric field with a gel retardation assay is explained.


Assuntos
Polímeros , Cátions , Ensaio de Desvio de Mobilidade Eletroforética , RNA Interferente Pequeno/genética , Sefarose
3.
IEEE J Biomed Health Inform ; 26(11): 5575-5583, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054399

RESUMO

Precise and quick monitoring of key cytometric features such as cell count, size, morphology, and DNA content is crucial in life science applications. Traditionally, image cytometry relies on visual inspection of hemocytometers. This approach is error-prone due to operator subjectivity. Recently, deep learning approaches have emerged as powerful tools enabling quick and accurate image cytometry applicable to different cell types. Leading to simpler, compact, and affordable solutions, these approaches revealed image cytometry as a viable alternative to flow cytometry or Coulter counting. In this study, we demonstrate a modular deep learning system, DeepCAN, providing a complete solution for automated cell counting and viability analysis. DeepCAN employs three different neural network blocks called Parallel Segmenter, Cluster CNN, and Viability CNN that are trained for initial segmentation, cluster separation, and viability analysis. Parallel Segmenter and Cluster CNN blocks achieve accurate segmentation of individual cells while Viability CNN block performs viability classification. A modified U-Net network, a well-known deep neural network model for bioimage analysis, is used in Parallel Segmenter while LeNet-5 architecture and its modified version Opto-Net are used for Cluster CNN and Viability CNN, respectively. We train the Parallel Segmenter using 15 images of A2780 cells and 5 images of yeasts cells, containing, in total, 14742 individual cell images. Similarly, 6101 and 5900 A2780 cell images are employed for training Cluster CNN and Viability CNN models, respectively. 2514 individual A2780 cell images are used to test the overall segmentation performance of Parallel Segmenter combined with Cluster CNN, revealing high Precision/Recall/F1-Score values of 96.52%/96.45%/98.06%, respectively. Cell counting/viability performance of DeepCAN is tested with A2780 (2514 cells), A549 (601 cells), Colo (356 cells), and MDA-MB-231 (887 cells) cell images revealing high analysis accuracies of 96.76%/99.02%, 93.82%/95.93%, and 92.18%/97.90%, 85.32%/97.40%, respectively.


Assuntos
Aprendizado Profundo , Neoplasias Ovarianas , Humanos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular Tumoral , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA