RESUMO
Natural killer (NK) cells are a part of the innate immune system, providing the first line of defense against cancer cells and pathogens at an early stage. Hence, they are attracting attention as a valuable resource for allogeneic cell immunotherapy. However, NK cells exist with limited proportion in blood, and obtaining sufficient clinical-grade NK cells with highly viable and minimal stress is critical for successful immune cell therapy. Conventional purification methods via immunoaffinity or density gradient centrifugation had several limitations in yield, purity, and cellular stress, which might cause an increased risk for graft versus host disease and reduced efficacy due to NK cell malfunction, exhaustion, and apoptosis. Moreover, reducing the variations of isolation performance caused by the manual process is another unmet need for uniform quality of the living drug. Here, an automated system using an NK disc (NKD) based on continuous centrifugal microfluidics (CCM) technology was developed to isolate NK cells from whole blood with high yield, purity, reproducibility, and low stress. The CCM technology, which operates fluidic manipulation under disc rotation, enabled precise extraction of the ultra-thin target fluid layer generated by blood centrifugation. Compared to the conventional manual method, the CCM-NKD isolated NK cells with higher yield (recovery rate) and purity, while maintaining better reproducibility. Furthermore, since the CCM-NKD maintained substantially milder centrifugation conditions (120 ×g for 10 min) compared to the conventional approach (1200 ×g for 20 min), it showed reduced cellular stress and increased antioxidant capacity in the isolated NK cells. Based on the results, the CCM-NKD is expected to be a useful tool to provide highly intact and viable cell weapons for successful immune cell therapy.
Assuntos
Células Matadoras Naturais , Microfluídica , Reprodutibilidade dos Testes , ImunoterapiaRESUMO
Charcot-Marie-Tooth disease subtype 1A (CMT1A) is one of the most prevalent demyelinating peripheral neuropathies worldwide, caused by duplication of the peripheral myelin protein 22 (PMP22) gene, which is expressed primarily in Schwann cells (SCs). PMP22 overexpression in SCs leads to intracellular aggregation of the protein, which eventually results in demyelination. Unfortunately, previous biochemical approaches have not resulted in an approved treatment for CMT1A disease, compelling the pursuit for a biophysical approach such as electrical stimulation (ES). However, the effects of ES on CMT1A SCs have remained unexplored. In this study, we established PMP22-overexpressed Schwannoma cells as a CMT1A in vitro model, and investigated the biomolecular changes upon applying ES via a custom-made high-throughput ES platform, screening for the condition that delivers optimal therapeutic effects. While PMP22-overexpressed Schwannoma exhibited intracellular PMP22 aggregation, ES at 20 Hz for 1 h improved this phenomenon, bringing PMP22 distribution closer to healthy condition. ES at this condition also enhanced the expression of the genes encoding myelin basic protein (MBP) and myelin-associated glycoprotein (MAG), which are essential for assembling myelin sheath. Furthermore, ES altered the gene expression for myelination-regulating transcription factors Krox-20, Oct-6, c-Jun and Sox10, inducing pro-myelinating effects in PMP22-overexpressed Schwannoma. While electroceuticals has previously been applied in the peripheral nervous system towards acquired peripheral neuropathies such as pain and nerve injury, this study demonstrates its effectiveness towards ameliorating biomolecular abnormalities in an in vitro model of CMT1A, an inherited peripheral neuropathy. These findings will facilitate the clinical translation of an electroceutical treatment for CMT1A.
Assuntos
Técnicas Biossensoriais , Doença de Charcot-Marie-Tooth , Neurilemoma , Humanos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Neurilemoma/metabolismoRESUMO
Rare cells, such as circulating tumor cells or circulating fetal cells, provide important information for the diagnosis and prognosis of cancer and prenatal diagnosis. Since undercounting only a few cells can lead to significant misdiagnosis and incorrect decisions in subsequent treatment, it is crucial to minimize cell loss, particularly for rare cells. Moreover, the morphological and genetic information on cells should be preserved as intact as possible for downstream analysis. The conventional immunocytochemistry (ICC), however, fails to meet these requirements, causing unexpected cell loss and deformation of the cell organelles which may mislead the classification of benign and malignant cells. In this study, a novel ICC technique for preparing lossless cellular specimens was developed to improve the diagnostic accuracy of rare cell analysis and analyze intact cellular morphology. To this end, a robust and reproducible porous hydrogel pellicle was developed. This hydrogel encapsulates cells to minimize cell loss from the repeated exchange of reagents and prevent cell deformation. The soft hydrogel pellicle allows stable and intact cell picking for further downstream analysis, which is difficult with conventional ICC methods that permanently immobilize cells. The lossless ICC platform will pave the way for robust and precise rare cell analysis toward clinical practice.
Assuntos
Neoplasias , Humanos , Imuno-Histoquímica , Porosidade , HidrogéisRESUMO
As the myelin sheath is crucial for neuronal saltatory conduction, loss of myelin in the peripheral nervous system (PNS) leads to demyelinating neuropathies causing muscular atrophy, numbness, foot deformities and paralysis. Unfortunately, few interventions are available for such neuropathies, because previous pharmaceuticals have shown severe side effects and failed in clinical trials. Therefore, exploring new strategies to enhance PNS myelination is critical to provide solution for such intractable diseases. This study aimed to investigate the effectiveness of electrical stimulation (ES) to enhance myelination in the mouse dorsal root ganglion (DRG)-anex vivomodel of the PNS. Mouse embryonic DRGs were extracted at E13 and seeded onto Matrigel-coated surfaces. After sufficient growth and differentiation, screening was carried out by applying ES in the 1-100 Hz range at the beginning of the myelination process. DRG myelination was evaluated via immunostaining at the intermediate (19 daysin vitro(DIV)) and mature (30 DIV) stages. Further biochemical analyses were carried out by utilizing ribonucleic acid sequencing, quantitative polymerase chain reaction and biochemical assays at both intermediate and mature myelination stages. Imaging of DRG myelin lipids was carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS). With screening ES conditions, optimal condition was identified at 20 Hz, which enhanced the percentage of myelinated neurons and average myelin length not only at intermediate (129% and 61%) but also at mature (72% and 17%) myelination stages. Further biochemical analyses elucidated that ES promoted lipid biosynthesis in the DRG. ToF-SIMS imaging showed higher abundance of the structural lipids, cholesterol and sphingomyelin, in the myelin membrane. Therefore, promotion of lipid biosynthesis and higher abundance of myelin lipids led to ES-mediated myelination enhancement. Given that myelin lipid deficiency is culpable for most demyelinating PNS neuropathies, the results might pave a new way to treat such diseases via electroceuticals.
Assuntos
Gânglios Espinais , Células de Schwann , Animais , Células Cultivadas , Lipídeos , Camundongos , Bainha de Mielina/fisiologia , Regulação para CimaRESUMO
Although many efforts are undertaken to treat peripheral demyelinating neuropathies based on biochemical interventions, unfortunately, there is no approved treatment yet. Furthermore, previous studies have not shown improvement of the myelin membrane at the biomolecular level. Here, an electroceutical treatment is introduced as a biophysical intervention to treat Charcot-Marie-Tooth (CMT) disease-the most prevalent peripheral demyelinating neuropathy worldwide-using a mouse model. The specific electrical stimulation (ES) condition (50 mV mm-1 , 20 Hz, 1 h) for optimal myelination is found via an in vitro ES screening system, and its promyelinating effect is validated with ex vivo dorsal root ganglion model. Biomolecular investigation via time-of-flight secondary ion mass spectrometry shows that ES ameliorates distribution abnormalities of peripheral myelin protein 22 and cholesterol in the myelin membrane, revealing the restoration of myelin membrane integrity. ES intervention in vivo via flexible implantable electrodes shows not only gradual rehabilitation of mouse behavioral phenotypes (balance and endurance), but also restored myelin thickness, compactness, and membrane integrity. This study demonstrates, for the first time, that an electroceutical approach with the optimal ES condition has the potential to treat CMT disease and restore impaired myelin membrane integrity, shifting the paradigm toward practical interventions for peripheral demyelinating neuropathies.