Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Langmuir ; 30(7): 1805-11, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24490590

RESUMO

Detachment of droplets from solid surfaces is a basic and crucial process in practical applications such as heat transfer and digital microfluidics. In this study, electrowetting actuations with square pulse signals are employed to detach droplets from a hydrophobic surface. The threshold voltage for droplet detachment is obtained both experimentally and theoretically to find that it is almost constant for various droplet volumes ranging from 0.4 to 10 µL. It is also found that droplets can be detached more easily when the width of applied pulse is well-matched to the spreading time (i.e., the time to reach the maximum spread diameter). When the droplet is actuated by a double square pulse, the threshold voltage is reduced by ∼20% from that for a single square pulse actuation. Finally, by introducing an interdigitated electrode system, it is demonstrated that droplets can be detached from the solid bottom surface without using a top needle electrode.

2.
Langmuir ; 29(29): 9118-25, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23799243

RESUMO

This study investigates the effects of drop size and viscosity on spreading dynamics, including response time, maximum velocity, and spreading pattern transition, in response to various DC voltages, based on both experiment and theoretical modeling. It is experimentally found that both switching time (i.e., time to reach maximum wetted radius) and settling time (i.e., time to reach equilibrium radius) are proportional to 1.5th power of the effective base radius. It is also found that the maximum velocity is slightly dependent on drop size but linearly proportional to the electrowetting number. The viscosity effect on drop spreading is investigated by observing spreading patterns with respect to applied voltages, and the critical viscosity at which a spreading pattern changes from under- to overdamped response is obtained. Theoretical models with contact angle hysteresis predict the spreading dynamics of drops with low and high viscosities fairly well. By fitting the theoretical models to experimental results, we obtain the friction coefficient, which is nearly proportional to 0.6th power of viscosity and is rarely influenced by applied voltage and drop size. Finally, we find that drop viscosity has a weak effect on maximum velocity but not a clear one on contact line friction.

3.
Langmuir ; 28(15): 6307-12, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22439770

RESUMO

When placed on an inclined solid plane, drops often stick to the solid surface due to pinning forces caused by contact angle hysteresis. When the drop size or the plane's incline angle is small, the drop is difficult to slide due to a decrease in gravitational force. Here we demonstrate that small drops (0.4-9 µL) on a slightly inclined plane (~12°, Teflon and parylene-C surface) can be mobilized through patterned electrodes by applying low-frequency ac electrowetting under 400 Hz (110-180 V(rms)), which has a mechanism different from that of the high-frequency ac method that induces sliding by reducing contact angle hysteresis. We attribute the sliding motion of our method to a combination of contact angle hysteresis and interfacial oscillation driven by ac electrowetting instead of the minimization of contact angle hysteresis at a high frequency. We investigated the effects of ac frequency on the sliding motion and terminal sliding of drops; the terminal sliding velocity is greatest at resonance frequency. Varying the electrowetting number (0.21-0.56) at a fixed frequency (40 Hz) for 5 µL drops, we found an empirical relationship between the electrowetting number and the terminal sliding velocity. Using the relationship between the drop size and ac frequency, we can selectively slide drops of a specific size or merge two drops along an inclined plane. This simple method will help with constructing microfluidic platforms with sorting, merging, transporting, and mixing of drops without a programmable control of electrical signals. Also, this method has a potential in heat transfer applications because heat removal capacity can be enhanced significantly through drop oscillation.

4.
Anal Chem ; 82(8): 3383-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20307052

RESUMO

We developed a novel method to increase the sensitivity of standard enzyme-linked immunosorbent assay (ELISA) using a multiplexed electrokinetic concentration chip. The poly(dimethylsiloxane) (PDMS) molecular concentrator (1) was used to trap and collect charged fluorescent product of target-bound enzyme turnover reaction of ELISA that occurred in a standard 96 well plate. Detection sensitivities of both prostate specific antigen (PSA) and CA 19-9 (a human pancreatic and gastrointestinal cancer marker) ELISAs in serum are enhanced approximately 100 fold with a low CV of <17%. We also integrated this method with an on-chip bead-based ELISA that lends itself toward a fully automated on-chip diagnostic device. Detection sensitivity of microfluidic bead-based CA 19-9 ELISA in serum is enhanced approximately 65 fold compared to the results without the electrokinetic accumulation step. This chip can be directly applied to enhance the readout sensitivity of a wide range of existing ELISA kits at concentrations below the current detection limit.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Biomarcadores Tumorais/sangue , Antígeno CA-19-9/sangue , Dimetilpolisiloxanos/química , Ensaio de Imunoadsorção Enzimática/instrumentação , Humanos , Cinética , Masculino , Antígeno Prostático Específico/sangue
5.
J Phys Chem B ; 113(36): 12271-6, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19685863

RESUMO

To understand the dynamics of dielectric-liquid-based colloidal systems, the effect of electric field on conductivity of dielectric liquids must be characterized. We measured dc conductivity of dielectric liquids mixed with polar additives, including surfactants, an alcohol, and an oil-soluble salt. The conductivities of the mixtures increased with the electric field and concentration of polar additives and were also affected by temperature. Conductivity increased with electric-field strength at very similar rates, almost irrespective of the kind of mixture. A simple formula derived from Onsager theory predicted the electrical conductivity under electric field fairly well.

6.
J Colloid Interface Sci ; 310(2): 607-16, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17368472

RESUMO

Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.


Assuntos
Modelos Teóricos , Reologia , Eletroquímica , Osmose
7.
J Colloid Interface Sci ; 286(2): 792-806, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15897097

RESUMO

There is a concentration-polarization (CP) force acting on a particle submerged in an electrolyte solution with a concentration (conductivity) gradient under an externally applied DC electric field. This force originates from the two mechanisms: (i) gradient of electrohydrodynamic pressure around the particle developed by the Coulombic force acting on induced free charges by the concentration polarization, and (ii) dielectric force due to nonuniform electric field induced by the conductivity gradient. A perturbation analysis is performed for the electric field, the concentration field, and the hydrodynamic field, under the assumptions of creeping flow and small concentration gradient. The leading order component of this force acting on a dielectric spherical particle is obtained by integrating the Maxwell and the hydrodynamic stress tensors. The analytical results are validated by comparing the surface pressure and the skin friction to those of a numerical analysis. The CP force is proportional to square of the applied electric field, effective for electrically neutral particles, and always directs towards the region of higher ionic concentration. The magnitude of the CP force is compared to that of the electrophoretic and the conventional dielectrophoretic forces.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25314539

RESUMO

We examine the nature of ac electrowetting (EW)-driven axisymmetric oscillations of a sessile water drop on a dielectric substrate. In ac EW, small-amplitude oscillations of a drop differ from the Rayleigh linear modes of freely oscillating drops. In this paper, we demonstrate that changes in the time-averaged contact angle of the sessile drop attributed to the presence of an electric field and a solid substrate mainly caused this discrepancy. We combine the domain perturbation method with the Lindsted-Poincaré method to derive an asymptotic formula for resonant frequency. Theoretical analysis shows that the resonant frequency is a function of the time-averaged contact angle. Each mode of the resonance frequency is a linear function of ɛ(1), which is the magnitude of the cosine of the time-averaged contact angle. The most dominant mode in this study, that is, the fundamental mode n=2, decreases linearly with ɛ(1). The results of the theoretical model are compared with those of both the experiments and numerical simulations. The average resonant frequency deviation between the perturbation solutions and numerical simulations is 4.3%, whereas that between the perturbation solutions and the experiments is 1.8%.


Assuntos
Eletricidade , Eletroumectação , Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Dinâmica não Linear , Propriedades de Superfície
9.
Sci Rep ; 3: 3483, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24352563

RESUMO

We proposed a novel separation method, which is the first report using ion concentration polarization (ICP) to separate particles continuously. We analyzed the electrical forces that cause the repulsion of particles in the depletion region formed by ICP. Using the electrical repulsion, micro- and nano-sized particles were separated based on their electrophoretic mobilities. Because the separation of particles was performed using a strong electric field in the depletion region without the use of internal electrodes, it offers the advantages of simple, low-cost device fabrication and bubble-free operation compared with conventional continuous electrophoretic separation methods, such as miniaturizing free-flow electrophoresis (µ-FFE). This separation device is expected to be a useful tool for separating various biochemical samples, including cells, proteins, DNAs and even ions.

10.
Sci Rep ; 3: 2037, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23784001

RESUMO

We report that a droplet dispensed from a micropipette almost always has a considerable electrical charge of a magnitude dependent on the constituents of the droplet, on atmospheric humidity and on the coating material of pipette tip. We show that this natural electrification of a droplet originates from the charge separation between a droplet and pipette tip surface by contact with water due to the ionization of surface chemical groups. Charge on a droplet can make it difficult to detach the droplet from the pipette tip, can decrease its surface tension, can affect the chemical characteristics of solutions due to interactions with charged molecules, and can influence the combination and localization of charged bio-molecules; in all cases, the charge may affect results of experiments in which any of these factors is important. Thus, these findings reveal experimental parameters that should be controlled in experiments that use micropipettes.

11.
Lab Chip ; 12(21): 4472-82, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22907316

RESUMO

In this paper, we introduce a simple, straight microchannel design for a nanofluidic protein concentration device. Compared with concentration devices previously developed, the anode channel and cathode channel in this new concentration scheme are both integrated into a straight microchannel, with one inlet and one outlet. Most of the functions of a conventional two-channel concentration device can be achieved by this concentration device, and the efficiency of sample accumulation can be controlled by the dimension of the Nafion membrane. Also, the operating mechanism of this device was tested on various material combinations such as PDMS (polydimethyl-siloxane) channel-glass substrate and silicon channel-PDMS substrate. Using a combined PDMS-silicon device which was sealed reversibly without plasma bonding, surface based immunoassay for concentrator-enhanced detection of clinically relevant samples such as C-reactive protein (CRP) was demonstrated. As a result, it was possible to enhance the detection sensitivity of the immunoassay by more than 500 folds compared to the immunoassay without preconcentration process.


Assuntos
Proteína C-Reativa/análise , Imunoensaio/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/métodos , Dimetilpolisiloxanos/química , Desenho de Equipamento , Imunoensaio/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Silício/química
12.
Nanoscale ; 4(23): 7406-10, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23085964

RESUMO

In this work, we investigated multiple vortical flows inside the ion concentration polarization (ICP) layer that forms due to a coupling of applied electric fields and the semipermeable nanoporous junction between microchannels. While only a primary vortex near perm-selective membrane is traditionally known to lead to electrokinetic instability, multiple vortexes induced by the primary vortex were found to play a major role in the electrokinetic instability. The existence of multiple vortexes was directly confirmed by experiments using particle tracers and interdigitated electrodes were used to measure the local concentration profile inside the ICP layer. At larger applied electric fields, we observed aperiodic fluid motion due to electrokinetic instabilities which develop from a coupling of applied electric fields and electrical conductivity gradients induced by the ICP. The electrokinetic instability at micro-nanofluidic interfaces is important in the development of various electro-chemical-mechanical applications such as fuel cells, bio-analytical preconcentration methods, water purification/desalination and the fundamental study of ion electromigration through nanochannels and nonporous perm-selective membranes.

13.
Lab Chip ; 11(7): 1351-8, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21321747

RESUMO

A massively parallel nanofluidic concentration device array for multiplexed and high-throughput biomolecule detection is demonstrated. By optimizing the microchannel/nanojunction design and channel conductivity, an array of up to 128 nanofluidic concentration devices were fabricated. Operation of the entire array requires only one inlet and one outlet reservoir, with the application of a single operational voltage bias across them. Concentration efficiencies of the devices were found to be uniform within the array, within 5% error. Alternatively, concentration speed in each channel can be individually tuned by controlling the length of the inlet microchannel and thus controlling the flow rate based on change of the tangential electric field. This allows immuno-binding reactions at different concentration ranges to be performed in parallel. Using multiplexed, successive-concentration enhanced detection in the device, we have shown that the dynamic range and reliability of the immunoassay can be significantly increased.


Assuntos
Imunoensaio/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Métodos Analíticos de Preparação de Amostras , Animais , Proteína C-Reativa/metabolismo , Bovinos , Dimetilpolisiloxanos/química , Microesferas
14.
Biomicrofluidics ; 4(2)2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20697587

RESUMO

In a droplet transport based on electrowetting on dielectrics, the parallel-plate configuration is more popular than the single-plate one because the droplet transport becomes increasingly difficult without cover plate. In spite of the improved transport performance, the parallel-plate configuration often limits the access to the peripheral components, requesting the removal of the cover plate, the single-plate configuration. We investigated the fundamental features of droplet transport for the single-plate configuration. We compared the performance of several switching methods with respect to maximum speed of successive transport without failure and suggested nonfloating switching method which is inherently free from the charge-residue problem and exerts greater force on a droplet than conventional switching methods. A simple theory is provided to understand the different results for the switching methods.

15.
Nat Nanotechnol ; 5(4): 297-301, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20305644

RESUMO

A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity approximately 500 mM or approximately 30,000 mg l(-1)) to fresh water (salinity <10 mM or <600 mg l(-1)) in which a continuous stream of sea water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (approximately 99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l(-1), which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.


Assuntos
Filtração/métodos , Água do Mar/química , Purificação da Água/métodos , Íons/química , Salinidade , Sais/isolamento & purificação
16.
Biomicrofluidics ; 4(3)2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20697461

RESUMO

Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.

17.
Biomicrofluidics ; 3(4): 44113, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20216975

RESUMO

In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.

18.
Langmuir ; 24(3): 1094-101, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18177057

RESUMO

Hydrodynamic flows are generated inside a droplet in electrowetting when an ac voltage is applied. To discover the characteristics and origin of the flows, we investigated the flow pattern for a sessile droplet for various needle-electrode positions, electrolyte concentrations, and applied electrical frequencies. Two distinct types of flows were observed under current experimental conditions. In the typical experimental condition, a quite fast flow appears in the low-frequency range of about 10 Hz to 15 kHz. A different type of flow is observed in the high-frequency range of about 35 to 256 kHz, but this frequency range depends significantly on the electrolyte concentration. Most typically, the flow directions are different for the two flows. A shape oscillation of a droplet was observed in the low-frequency range by a high-speed camera. The flow in the low-frequency range is insensitive to the conductivity of the solution and may be caused by the interfacial oscillation of the droplet. The flow at high frequency is very sensitive to the conductivity of the solution and electrode position, so the high-frequency flow is believed to be caused by some electrohydrodynamic effect.

19.
Langmuir ; 24(15): 8379-86, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18582134

RESUMO

A sessile drop oscillates when an ac voltage is applied in electrowetting. The oscillation results from the time-varying electrical force concentrated on the three-phase contact line. Little is known about the feature of drop oscillation in electrowetting. In the present work, the drop oscillations are observed systematically, and a theoretical model is developed to analyze the oscillation. It is revealed that resonance occurs at certain frequencies and the oscillation pattern is significantly dependent on the applied ac frequencies. The domain perturbation method is used to derive the shape-mode equations under the assumptions of a weak viscous effect and small drop deformation. The electrical force concentrated on the three-phase contact line is approximated as a delta function, which is decomposed and substituted into each shape-mode equation as a forcing term. The theoretical results for the shape and frequency responses are compared with experimental results, which shows qualitative agreement.

20.
Langmuir ; 22(4): 1602-8, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16460080

RESUMO

When two particles close to each other are in electrophoretic motion, each particle is under the influence of the nonuniform electric field generated by the other particle. Two particles may attract or repel each other due to the dielectric force, depending on their positions in the nonuniform electric field. In this work, the dielectric interaction and the subsequent relative motion of the two arbitrarily oriented spherical particles are analyzed. The dielectric force is obtained by integrating the Maxwell stress. The result is valid for arbitrary orientations of the particles under the thin electrical-double-layer assumption. The magnitude of the dielectric force is compared to the so-called inertia-induced force, which shows that the dielectric force is normally much greater than the inertia-induced force. The relative velocity of particles is determined by the force balance between the dielectric force and the Stokes drag. The regions of attraction and repulsion are defined. It is shown that a pair of particles eventually aligns parallel to the externally applied electric field, except in the case where the two particles are initially oriented perpendicular to the electric field. A closed-form analytical solution is obtained for the particle trajectory by using the approximate expression for the dielectric force valid for not-too-closely located particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA