Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36735910

RESUMO

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Assuntos
Proteômica , Espermidina , Humanos , Espermidina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Diferenciação Celular , Fator de Iniciação de Tradução Eucariótico 5A
2.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G245-G249, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749570

RESUMO

Tumor heterogeneity is a hallmark of cancer but a challenging problem to dissect mechanistically. Less recognized is that cells within normal tissues are also remarkably diverse. Hepatocytes are a great example because their spatial positioning and the local microenvironment govern their genetic heterogeneity. Recent studies show that primary liver tumors display heterogeneity similar to that observed in the normal tissue providing clues to the cellular precursor of the tumor and how variations in the lobule microenvironment support tumor formation and aggressiveness. Identifying the principles that control cellular diversity in a healthy liver may highlight potential mechanisms driving hepatic tumor heterogeneity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fígado/patologia , Hepatócitos/patologia , Microambiente Tumoral
3.
Am J Physiol Cell Physiol ; 317(5): C942-C952, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411916

RESUMO

Hepatocyte polarization is energy dependent. The establishment of polarization in collagen sandwich culture of hepatocytes requires utilization of lipid droplets and mitochondrial ß-oxidation to supply ATP. Multiple cellular pathways are involved in lipid droplet homeostasis; however, mechanistic insights of how hepatocytes utilize lipid droplets during polarization remain elusive. The current study investigated the effects of various pathways involved in lipid droplet homeostasis on bioenergetics during hepatocyte polarization. The results showed that hepatocytes were dependent on lipolysis of lipid droplets to release fatty acids for ß-oxidation. Inhibition of lipolysis significantly decreased cellular fatty acid and ATP levels and inhibited hepatocyte polarization, revealing that lipolysis was an important mechanism for providing energy for hepatocyte polarization. The results also demonstrated that autophagic degradation of lipid droplets (lipophagy) was not essential for breaking down lipid droplets. Conversely, autophagy contributed to lipid droplet formation and played a key role in sustaining lipid droplet stores for energy production. In addition, cholesterol biosynthesis/cholesterol esterification and de novo fatty acid synthesis also contributed to maintaining lipid droplet stores for bioenergetics during hepatocyte polarization. In summary, multiple cellular pathways are coordinated to maintain lipid droplet homeostasis and sustain fatty acid ß-oxidation during hepatocyte polarization.


Assuntos
Polaridade Celular/fisiologia , Colágeno/metabolismo , Hepatócitos/metabolismo , Homeostase/fisiologia , Gotículas Lipídicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley
4.
Crit Rev Eukaryot Gene Expr ; 29(5): 483-497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32422004

RESUMO

Hepatocytes have well-defined polarized morphological structure. Establishment and maintenance of cellular polarity is crucial to the function and viability of hepatocytes. Many disorders, both genetic and acquired, and drugs can impair hepatocyte polarization resulting in liver dysfunction and injury. Hepatocyte polarization is an energy-dependent cellular process. Hence, cellular energy metabolism can significantly affect the polarized morphology and function of hepatocytes. Recent in vitro studies have demonstrated that multiple cellular organelles, including mitochondria, auto-phagosomes and lipid droplets, are involved in the utilization of energy for hepatocyte polarization; also, AMP-dependent kinase (AMPK), a key cellular energy sensor, regulates the function and activities of these cellular organelles and thus plays an important role in bioenergetics for hepatocyte polarization. This review provides the latest understanding on how mitochondria, autophagosomes, and lipid droplets coordinate energy production, and it addresses how AMPK activation regulates these key cellular organelles for energy production during hepatocyte polarization. Furthermore, the review suggests potential directions for future research.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Polaridade Celular , Metabolismo Energético , Autofagossomos/metabolismo , Hepatócitos/enzimologia , Hepatócitos/fisiologia , Humanos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo
5.
J Invest Dermatol ; 144(6): 1311-1321.e7, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38103827

RESUMO

Epithelial cells in the skin and other tissues rely on signals from their environment to maintain homeostasis and respond to injury, and GPCRs play a critical role in this communication. A better understanding of the GPCRs expressed in epithelial cells will contribute to understanding the relationship between cells and their niche and could lead to developing new therapies to modulate cell fate. This study used human primary keratinocytes as a model to investigate the specific GPCRs regulating epithelial cell proliferation and differentiation. We identified 3 key receptors-HCAR3, LTB4R, and GPR137-and found that knockdown of these receptors led to changes in numerous gene networks that are important for maintaining cell identity and promoting proliferation while inhibiting differentiation. Our study also revealed that the metabolite receptor HCAR3 regulates keratinocyte migration and cellular metabolism. Knockdown of HCAR3 led to reduced keratinocyte migration and respiration, which could be attributed to altered metabolite use and aberrant mitochondrial morphology caused by the absence of the receptor. This study contributes to understanding the complex interplay between GPCR signaling and epithelial cell fate decisions.


Assuntos
Movimento Celular , Proliferação de Células , Respiração Celular , Queratinócitos , Receptores Acoplados a Proteínas G , Humanos , Queratinócitos/metabolismo , Queratinócitos/citologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Respiração Celular/fisiologia , Transdução de Sinais , Diferenciação Celular , Células Cultivadas , Receptores do Leucotrieno B4/metabolismo , Receptores do Leucotrieno B4/genética , Células Epiteliais/metabolismo , Receptores Nicotínicos
6.
Nat Commun ; 15(1): 1799, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418824

RESUMO

In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal and pericentral axis. How the mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combine intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We find that periportal and pericentral mitochondria are morphologically and functionally distinct; beta-oxidation is elevated in periportal regions, while lipid synthesis is predominant in the pericentral mitochondria. In addition, comparative phosphoproteomics reveals spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifts mitochondrial phenotypes in the periportal and pericentral regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.


Assuntos
Fígado , Mitocôndrias , Fígado/metabolismo , Oxirredução , Mitocôndrias/metabolismo
7.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398171

RESUMO

Epithelial cells in the skin and other tissues rely on signals from their environment to maintain homeostasis and respond to injury, and G protein-coupled receptors (GPCRs) play a critical role in this communication. A better understanding of the GPCRs expressed in epithelial cells will contribute to understanding the relationship between cells and their niche and could lead to developing new therapies to modulate cell fate. This study used human primary keratinocytes as a model to investigate the specific GPCRs regulating epithelial cell proliferation and differentiation. We identified three key receptors, hydroxycarboxylic acid-receptor 3 (HCAR3), leukotriene B4-receptor 1 (LTB4R), and G Protein-Coupled Receptor 137 (GPR137) and found that knockdown of these receptors led to changes in numerous gene networks that are important for maintaining cell identity and promoting proliferation while inhibiting differentiation. Our study also revealed that the metabolite receptor HCAR3 regulates keratinocyte migration and cellular metabolism. Knockdown of HCAR3 led to reduced keratinocyte migration and respiration, which could be attributed to altered metabolite use and aberrant mitochondrial morphology caused by the absence of the receptor. This study contributes to understanding the complex interplay between GPCR signaling and epithelial cell fate decisions.

8.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37333328

RESUMO

In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal (PP) and pericentral (PC) axis. How these mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combined intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We found that PP and PC mitochondria are morphologically and functionally distinct; beta-oxidation was elevated in PP regions, while lipid synthesis was predominant in the PC mitochondria. In addition, comparative phosphoproteomics revealed spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifted mitochondrial phenotypes in the PP and PC regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.

9.
Hepatol Commun ; 6(8): 1949-1961, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35357082

RESUMO

As important as the fasting response is for survival, an inability to shut it down once nutrients become available can lead to exacerbated disease and severe wasting. The liver is central to transitions between feeding and fasting states, with glucagon being a key initiator of the hepatic fasting response. However, the precise mechanisms controlling fasting are not well defined. One potential mediator of these transitions is liver kinase B1 (LKB1), given its role in nutrient sensing. Here, we show LKB1 knockout mice have a severe wasting and prolonged fasting phenotype despite increased food intake. By applying RNA sequencing and intravital microscopy, we show that loss of LKB1 leads to a dramatic reprogramming of the hepatic lobule through robust up-regulation of periportal genes and functions. This is likely mediated through the opposing effect that LKB1 has on glucagon pathways and gene expression. Conclusion: Our findings show that LKB1 acts as a brake to the glucagon-mediated fasting response, resulting in "periportalization" of the hepatic lobule and whole-body metabolic inefficiency. These findings reveal a mechanism by which hepatic metabolic compartmentalization is regulated by nutrient-sensing.


Assuntos
Proteínas Quinases Ativadas por AMP , Jejum , Glucagon , Fígado , Proteínas Quinases Ativadas por AMP/genética , Animais , Glucagon/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout
10.
Curr Protoc ; 1(5): e139, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34033261

RESUMO

The liver is central in maintaining glucose homeostasis. Indeed, impaired hepatic glucose uptake has been implicated in the development of hyperglycemia in type II diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). However, current approaches to evaluate glucose mobilization rely on indirect measurements that do not provide spatial and temporal information. Here, we describe confocal-based intravital microscopy (IVM) of the liver that allows the identification of hepatocyte spatial organization and glucose transport. Specifically, we describe a method to fluorescently label hepatic landmarks to identify different compartments within the liver. In addition, we outline an in vivo fluorescent glucose uptake assay to quantitatively measure glucose mobilization in space and time. These protocols allow direct investigation of hepatic glycemic control and can be further applied to murine models of liver disease. © Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Mouse surgical procedure and positioning for liver intravital imaging Basic Protocol 2: Fluorescent labeling and intravital imaging of mouse hepatic compartments Basic Protocol 3: Mouse hepatic glucose uptake assay and intravital imaging analysis.


Assuntos
Glucose/metabolismo , Microscopia Intravital , Fígado/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animais , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Corantes Fluorescentes/química , Hepatócitos/metabolismo , Imageamento Tridimensional , Camundongos
11.
ACS Nano ; 14(2): 1492-1507, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31976646

RESUMO

Quantum dots (QDs) are used for imaging and transport of therapeutics. Here we demonstrate rapid absorption across the small intestine and targeted delivery of QDs with bound materials to the liver sinusoidal endothelial cells (LSECs) or hepatocytes in vitro and in vivo following oral administration. QDs were radiolabeled with 3H-oleic acid, with a fluorescent tag or 14C-metformin placed within a drug binding site. Three different biopolymer shell coatings were compared (formaldehyde-treated serum albumin (FSA), gelatin, heparin). Passage across the small intestine into mesenteric veins is mediated by clathrin endocytosis and micropinocytosis. 60% of an oral dose of QDs was rapidly distributed to the liver within 30 min, and this increased to 85% with FSA biopolymer coating. Uptake into LSECs also increased 3-fold with FSA coating, while uptake into hepatocytes was increased from 40% to 85% with gelatin biopolymer coating. Localization of QDs to LSECs was confirmed with immunofluorescence and transmission electron microscopy. 85% of QDs were cleared within 24 h of administration. The bioavailability of 14C-metformin 2 h post-ingestion was increased 5-fold by conjugation with QD-FSA, while uptake of metformin into LSECs was improved 50-fold by using these QDs. Endocytosis of QDs by SK-Hep1 cells (an LSEC immortal cell line) was via clathrin- and caveolae-mediated pathways with QDs taken up into lysosomes. In conclusion, we have shown high specificity targeting of the LSEC or hepatocytes after oral administration of QDs coated with a biopolymer layer of FSA or gelatin, which improved the bioavailability and delivery of metformin to LSECs.


Assuntos
Sistemas de Liberação de Medicamentos , Células Endoteliais/química , Intestino Delgado/química , Fígado/química , Pontos Quânticos/química , Compostos de Prata/química , Administração Oral , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Gelatina/química , Células HEK293 , Heparina/química , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Intestino Delgado/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Pontos Quânticos/administração & dosagem , Albumina Sérica/química , Compostos de Prata/administração & dosagem , Propriedades de Superfície
12.
J Gerontol A Biol Sci Med Sci ; 75(2): 278-285, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31198956

RESUMO

Age-related changes in the liver sinusoidal endothelium, particularly the reduction in fenestrations, contribute to insulin resistance in old age. Metformin impacts on the aging process and improves insulin resistance. Therefore, the effects of metformin on the liver sinusoidal endothelium were studied. Metformin increased fenestrations in liver sinusoidal endothelial cells isolated from both young and old mice. Mice administered metformin in the diet for 12 months had increased fenestrations and this was associated with lower insulin levels. The effect of metformin on fenestrations was blocked by inhibitors of AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase, and myosin light chain kinase phosphorylation. Metformin led to increased transgelin expression and structural changes in the actin cytoskeleton but had no effect on lactate production. Metformin also generated fenestration-like structures in SK-Hep1 cells, a liver endothelial cell line, and this was associated with increased ATP, cGMP, and mitochondrial activity. In conclusion, metformin ameliorates age-related changes in the liver sinusoidal endothelial cell via AMPK and endothelial nitric oxide pathways, which might promote insulin sensitivity in the liver, particularly in old age.


Assuntos
Fígado/metabolismo , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores Etários , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Resistência à Insulina , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Quinase de Cadeia Leve de Miosina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação
13.
Comput Struct Biotechnol J ; 17: 1151-1161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31462971

RESUMO

While the liver demonstrates remarkable resilience during aging, there is growing evidence that it undergoes all the cellular hallmarks of aging, which increases the risk of liver and systemic disease. The aging process in the liver is driven by alterations of the genome and epigenome that contribute to dysregulation of mitochondrial function and nutrient sensing pathways, leading to cellular senescence and low-grade inflammation. These changes promote multiple phenotypic changes in all liver cells (hepatocytes, liver sinusoidal endothelial, hepatic stellate and Küpffer cells) and impairment of hepatic function. In particular, age-related changes in the liver sinusoidal endothelial cells are a significant but under-recognized risk factor for the development of age-related cardiometabolic disease.

14.
PLoS One ; 11(10): e0165638, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27792760

RESUMO

Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Acetaminofen/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Diclofenaco/farmacologia , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA