Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 37(19): 4173-82, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18285859

RESUMO

Scattering effects in a two-photon optical data storage system are numerically studied. Surface scattering analysis with a scalar, beam propagation model is performed. We analyze the problem by modeling scattering from randomly varying surfaces and also by Fourier surface decomposition. Scattering induced by propagation through multiple pages of randomly recorded data marks is also studied with a hybrid finite-difference-time-domain/angular-spectrum model. Both surface and bulk scattering are shown to influence the spatial properties of the optical beam. Results and some possible implications are presented.

2.
Appl Opt ; 36(24): 5951-8, 1997 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18259436

RESUMO

A finite-difference-time-domain and two finite-difference-thermal models are used to study various heating mechanisms in a near-field optical system. It is shown that the dominant mechanism of sample heating occurs from optical power that is transferred from the probe to a metallic thin-film sample. The optical power is absorbed in the sample and converted to heat. The effects of thermal radiation from the probe 's coating and thermal conduction between the probe and the sample are found to be negligible. In a two-dimensional waveguide with TE polarization, most of the optical power is transferred directly from the aperture to the sample. In a two-dimensional waveguide with TM polarization, there is significant optical power transfer between the probe 's aluminum coating and the sample. The power transfer results in a wider thermal distribution with TM polarization than with TE polarization. Using computed temperature distributions in a Co -Pt film, we predict the relative size of thermally written marks in a three-dimensional geometry. The predicted mark size shows a 30 % asymmetry that is due to polarization effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA