Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104772, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142219

RESUMO

The ability of cells to store and rapidly mobilize energy reserves in response to nutrient availability is essential for survival. Breakdown of carbon stores produces acetyl-CoA (AcCoA), which fuels essential metabolic pathways and is also the acyl donor for protein lysine acetylation. Histones are abundant and highly acetylated proteins, accounting for 40% to 75% of cellular protein acetylation. Notably, histone acetylation is sensitive to AcCoA availability, and nutrient replete conditions induce a substantial accumulation of acetylation on histones. Deacetylation releases acetate, which can be recycled to AcCoA, suggesting that deacetylation could be mobilized as an AcCoA source to feed downstream metabolic processes under nutrient depletion. While the notion of histones as a metabolic reservoir has been frequently proposed, experimental evidence has been lacking. Therefore, to test this concept directly, we used acetate-dependent, ATP citrate lyase-deficient mouse embryonic fibroblasts (Acly-/- MEFs), and designed a pulse-chase experimental system to trace deacetylation-derived acetate and its incorporation into AcCoA. We found that dynamic protein deacetylation in Acly-/- MEFs contributed carbons to AcCoA and proximal downstream metabolites. However, deacetylation had no significant effect on acyl-CoA pool sizes, and even at maximal acetylation, deacetylation transiently supplied less than 10% of cellular AcCoA. Together, our data reveal that although histone acetylation is dynamic and nutrient-sensitive, its potential for maintaining cellular AcCoA-dependent metabolic pathways is limited compared to cellular demand.


Assuntos
Acetilcoenzima A , Carbono , Histonas , Animais , Camundongos , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Carbono/metabolismo , Fibroblastos/metabolismo , Histonas/metabolismo , Células Cultivadas
2.
Anal Biochem ; 685: 115405, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016493

RESUMO

Acetyl-Coenzyme A is a central metabolite in catabolic and anabolic pathways as well as the acyl donor for acetylation reactions. Multiple quantitative measurement techniques for acetyl-CoA have been reported, including commercially available kits. Comparisons between techniques for acetyl-CoA measurement have not been reported. This lack of comparability between assays makes context-specific assay selection and interpretation of results reporting changes in acetyl-CoA metabolism difficult. We compared commercially available colorimetric ELISA and fluorometric enzymatic-based kits to liquid chromatography-mass spectrometry-based assays using tandem mass spectrometry (LC-MS/MS) and high-resolution mass spectrometry (LC-HRMS). The colorimetric ELISA kit did not produce interpretable results even with commercially available pure standards. The fluorometric enzymatic kit produced comparable results to the LC-MS-based assays depending on matrix and extraction. LC-MS/MS and LC-HRMS assays produced well-aligned results, especially when incorporating stable isotope-labeled internal standards. In addition, we demonstrated the multiplexing capability of the LC-HRMS assay by measuring a suite of short-chain acyl-CoAs in a variety of acute myeloid leukemia cell lines and patient cells.


Assuntos
Colorimetria , Humanos , Acetilcoenzima A/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
3.
J Am Chem Soc ; 145(30): 16899-16905, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37486078

RESUMO

Chemoproteomic profiling is a powerful approach to define the selectivity of small molecules and endogenous metabolites with the human proteome. In addition to mechanistic studies, proteome specificity profiling also has the potential to identify new scaffolds for biomolecular sensing. Here, we report a chemoproteomics-inspired strategy for selective sensing of acetyl-CoA. First, we use chemoproteomic capture experiments to validate the N-terminal acetyltransferase NAA50 as a protein capable of differentiating acetyl-CoA and CoA. A Nanoluc-NAA50 fusion protein retains this specificity and can be used to generate a bioluminescence resonance energy transfer (BRET) signal in the presence of a CoA-linked fluorophore. This enables the development of a ligand displacement assay in which CoA metabolites are detected via their ability to bind the Nanoluc-NAA50 protein "host" and compete binding of the CoA-linked fluorophore "guest". We demonstrate that the specificity of ligand displacement reflects the molecular recognition of the NAA50 host, while the window of dynamic sensing can be controlled by tuning the binding affinity of the CoA-linked fluorophore guest. Finally, we show that the method's specificity for acetyl-CoA can be harnessed for gain-of-signal optical detection of enzyme activity and quantification of acetyl-CoA from cellular samples. Overall, our studies demonstrate the potential of harnessing insights from chemoproteomics for molecular sensing and provide a foundation for future applications in target engagement and selective metabolite detection.


Assuntos
Proteoma , Humanos , Acetilcoenzima A/química , Ligantes
4.
Mol Metab ; 81: 101888, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307385

RESUMO

Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in mediating histone lactoylation and inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH and histone lactoylation with a corresponding potentiation of the inflammatory response when exposed to lipopolysaccharides. An analysis of chromatin accessibility shows that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state; upon stimulation, however, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is the primary driving factor facilitating histone lactoylation and a major contributor to inflammatory signaling.


Assuntos
Histonas , Lactoilglutationa Liase , Histonas/metabolismo , Cromatina/metabolismo , Glicólise , Lactoilglutationa Liase/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo
5.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370789

RESUMO

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation. αKG is required for the activity of αKG-dependent dioxygenases (αKGDDs), and prior work has shown that changes in αKGDD affect demethylases. Using a targeted CRISPR knockout library consisting of 64 αKGDDs, we discovered that Trimethyllysine Hydroxylase Epsilon (TMLHE), the first and rate-limiting enzyme in de novo carnitine synthesis, is necessary for proliferation of HR-proficient cells in the presence of DNA damaging agents. Unexpectedly, αKG-mediated TMLHE-dependent carnitine synthesis was required for histone acetylation, while histone methylation was affected but dispensable. The increase in histone acetylation via αKG-dependent carnitine synthesis promoted HR-mediated DNA repair through site- and substrate-specific histone acetylation. These data demonstrate for the first time that HR-proficiency is mediated through αKG directly influencing histone acetylation via carnitine synthesis and provide a metabolic avenue to induce HR-deficiency and sensitivity to DNA damaging agents.

6.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966112

RESUMO

Cardiac metabolism provides effects that extend beyond the transformation of energy for the heart to operate effectively. Some metabolites also function as signaling molecules and exert transcriptional changes. Heart failure is a progressive pathology in which these metabolite functions falter. In this issue of the JCI, Yang et al. describe a protective effect from a low-branched chain amino acid (BCAA) diet in a mouse model of heart failure. The findings implicate a propionylation mark on histone H3 lysine 23 (H3K23Pr), previously shown to be dependent on the BCAA isoleucine, in transcriptional control of the cardiac stress response. The result underscores the interplay between metabolism and histone acylation, highlighting targeted dietary and pharmacological intervention as a means to decelerate cardiac hypertrophy.


Assuntos
Aminoácidos de Cadeia Ramificada , Insuficiência Cardíaca , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Coração , Insuficiência Cardíaca/metabolismo , Dieta , Transdução de Sinais
7.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398224

RESUMO

Acetyl-Coenzyme A is a central metabolite in catabolic and anabolic pathways as well as the acyl donor for acetylation reactions. Multiple quantitative measurement techniques for acetyl-CoA have been reported, including commercially available kits. Comparisons between techniques for acetyl-CoA measurement have not been reported. This lack of comparability between assays makes context-specific assay selection and interpretation of results reporting changes in acetyl-CoA metabolism difficult. We compared commercially available colorimetric ELISA and fluorometric enzymatic-based kits to liquid chromatography-mass spectrometry-based assays using tandem mass spectrometry (LC-MS/MS) and high-resolution mass spectrometry (LC-HRMS). The colorimetric ELISA kit did not produce interpretable results even with commercially available pure standards. The fluorometric enzymatic kit produced comparable results to the LC-MS-based assays depending on matrix and extraction. LC-MS/MS and LC-HRMS assays produced well-aligned results, especially when incorporating stable isotope-labeled internal standards. In addition, we demonstrated the multiplexing capability of the LC-HRMS assay by measuring a suite of short-chain acyl-CoAs in a variety of acute myeloid leukemia cell lines and patient cells.

8.
Sci Adv ; 9(18): eadf0115, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134161

RESUMO

The metabolite acetyl-CoA is necessary for both lipid synthesis in the cytosol and histone acetylation in the nucleus. The two canonical precursors to acetyl-CoA in the nuclear-cytoplasmic compartment are citrate and acetate, which are processed to acetyl-CoA by ATP-citrate lyase (ACLY) and acyl-CoA synthetase short-chain 2 (ACSS2), respectively. It is unclear whether other substantial routes to nuclear-cytosolic acetyl-CoA exist. To investigate this, we generated cancer cell lines lacking both ACLY and ACSS2 [double knockout (DKO) cells]. Using stable isotope tracing, we show that both glucose and fatty acids contribute to acetyl-CoA pools and histone acetylation in DKO cells and that acetylcarnitine shuttling can transfer two-carbon units from mitochondria to cytosol. Further, in the absence of ACLY, glucose can feed fatty acid synthesis in a carnitine responsive and carnitine acetyltransferase (CrAT)-dependent manner. The data define acetylcarnitine as an ACLY- and ACSS2-independent precursor to nuclear-cytosolic acetyl-CoA that can support acetylation, fatty acid synthesis, and cell growth.


Assuntos
Histonas , Lipogênese , Lipogênese/genética , Histonas/metabolismo , Acetilcarnitina/metabolismo , Acetilação , Acetilcoenzima A/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Glucose/metabolismo
9.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873172

RESUMO

Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH, while demonstrating a potentiated inflammatory response when exposed to lipopolysaccharides, corresponding with a rise in histone lactoylation. Interestingly, our data demonstrate that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state, however, upon stimulation, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is a primary contributing factor facilitating the inflammatory response.

10.
Vitam Horm ; 119: 43-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337629

RESUMO

Cobamides are a family of structurally-diverse cofactors which includes vitamin B12 and over a dozen natural analogs. Within the nucleotide loop structure, cobamide analogs have variable lower ligands that fall into three categories: benzimidazoles, purines, and phenols. The range of cobamide analogs that can be utilized by an organism is dependent on the specificity of its cobamide-dependent enzymes, and most bacteria are able to utilize multiple analogs but not all. Some bacteria have pathways for cobamide remodeling, a process in which imported cobamides are converted into compatible analogs. Here we discuss cobamide analog diversity and three pathways for cobamide remodeling, mediated by amidohydrolase CbiZ, phosphodiesterase CbiR, and some homologs of cobamide synthase CobS. Remodeling proteins exhibit varying degrees of specificity for cobamide substrates, reflecting different strategies to ensure that imported cobamides can be utilized.


Assuntos
Cobamidas , Vitamina B 12 , Cobamidas/química , Cobamidas/metabolismo , Humanos , Ligantes , Vitamina B 12/metabolismo
11.
Nat Cardiovasc Res ; 1(9): 817-829, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36776621

RESUMO

Heart failure (HF) is a leading cause of mortality. Failing hearts undergo profound metabolic changes, but a comprehensive evaluation in humans is lacking. We integrate plasma and cardiac tissue metabolomics of 678 metabolites, genome-wide RNA-sequencing, and proteomic studies to examine metabolic status in 87 explanted human hearts from 39 patients with end-stage HF compared with 48 nonfailing donors. We confirm bioenergetic defects in human HF and reveal selective depletion of adenylate purines required for maintaining ATP levels. We observe substantial reductions in fatty acids and acylcarnitines in failing tissue, despite plasma elevations, suggesting defective import of fatty acids into cardiomyocytes. Glucose levels, in contrast, are elevated. Pyruvate dehydrogenase, which gates carbohydrate oxidation, is de-repressed, allowing increased lactate and pyruvate burning. Tricarboxylic acid cycle intermediates are significantly reduced. Finally, bioactive lipids are profoundly reprogrammed, with marked reductions in ceramides and elevations in lysoglycerophospholipids. These data unveil profound metabolic abnormalities in human failing hearts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA