Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(7): 1350-1363, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34932058

RESUMO

The linear elasticity of dilute colloidal gels formed from discoidal latex particles is quantified as a function of aspect ratio and modeled by confocal microscopy characterization of their fractal cluster microstructure. Colloidal gels are of fundamental interest because of their widespread use to stabilize complex fluids in industry. Technological interest in producing gels of desired moduli using the least number of particles drives formulators to produce gels at dilute concentrations. However, dilute gels self-assembled from isotropic spheres offer limited scope for rheological tunability due to the universal characteristics of their fractal microstructure. Our results show that changing the building block shape from sphere to discoid yields very large shifts in gel elasticity relative to the universal behavior reported for spheres. This shift - tunable through aspect ratio - yields up to a 100-fold increase in elastic modulus at a fixed volume fraction. From modeling the results using the theory for fractal cluster gel rheology, which is applicable at the dilute conditions of this study, we reveal that the efficient generation of elasticity by the colloidal discoids is the consequence of the combined effects of shape anisotropy on the fractal microstructure of the gel network, the anisotropy of the attractive interparticle pair potentials, and the volumetric compactness of the fractal cluster. These results extend prior characterizations of the rheology of non-spherical particulate gels by providing quantitative estimates of how the specific mechanisms of fractality, pair potential, and clustering mediate the profound effects of particle shape anisotropy on the elastic rheology of colloidal gels.

2.
Soft Matter ; 15(37): 7479-7489, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31513214

RESUMO

We use alternating current (AC) electric field assisted self-assembly to produce two-dimensional, millimeter scale arrays of ellipsoidal colloids and study the kinetics of their phase reconfiguration by means of confocal microscopy, light scattering, and computer simulation. We find that the kinetics of orientational and positional ordering can be manipulated by changing the shape of the colloids: ellipsoids with aspect ratio 2.0 melt into disordered structures 5.7 times faster compared to spheres. On the other hand, ellipsoids self-assemble into ordered crystals at a similar rate to spheres. Confocal microscopy is used to directly visualize defects in the self-assembled structures. Small-angle light scattering (SALS) quantifies the light diffraction response, which is sensitive to the kinetics of positional and orientational ordering in the self-assembled anisotropic structures. We find three different light diffraction patterns: a phase with high orientational order (with chain-like structure in real space), a phase with high positional and orientational order (characteristic of a close-packed structure), and a phase that is disordered in position but with intermediate orientational order. The large influence of aspect ratio on the kinetics of the positionally and orientationally ordered phase is explored through simulation; it is found that the number of particle degrees of freedom controls the difference between the melting rates of the ellipsoids and spheres. This research contributes to the understanding of reconfiguration kinetics and optical properties of colloidal crystals produced from anisotropic colloids.

3.
Anal Chem ; 86(17): 8757-62, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25052546

RESUMO

A portable microplasma generation device (MGD) operated in ambient air is introduced for making a microfluidic paper-based analytical device (µPAD) that serves as a primary healthcare platform. By utilizing a printed circuit board fabrication process, a flexible and lightweight MGD can be fabricated within 30 min with ultra low-cost. This MGD can be driven by a portable power supply (less than two pounds), which can be powered using 12 V-batteries or ac-dc converters. This MGD is used to perform maskless patterning of hydrophilic patterns with sub-millimeter spatial resolution on hydrophobic paper substrates with good pattern transfer fidelity. Using this MGD to fabricate µPADs is demonstrated. With a proper design of the MGD electrode geometry, µPADs with 500-µm-wide flow channels can be fabricated within 1 min and with a cost of less than $USD 0.05/device. We then test the µPADs by performing quantitative colorimetric assay tests and establish a calibration curve for detection of glucose and nitrite. The results show a linear response to a glucose assay for 1-50 mM and a nitrite assay for 0.1-5 mM. The low cost, miniaturized, and portable MGD can be used to fabricate µPADs on demand, which is suitable for in-field diagnostic tests. We believe this concept brings impact to the field of biomedical analysis, environmental monitoring, and food safety survey.

4.
Sci Rep ; 11(1): 11042, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040047

RESUMO

External fields are commonly applied to accelerate colloidal crystallization; however, accelerated self-assembly kinetics can negatively impact the quality of crystal structures. We show that cyclically applied electric fields can produce high quality colloidal crystals by annealing local disorder. We find that the optimal off-duration for maximum annealing is approximately one-half of the characteristic melting half lifetime of the crystalline phase. Local six-fold bond orientational order grows more rapidly than global scattering peaks, indicating that local restructuring leads global annealing. Molecular dynamics simulations of cyclically activated systems show that the ratio of optimal off-duration for maximum annealing and crystal melting time is insensitive to particle interaction details. This research provides a quantitative relationship describing how the cyclic application of fields produces high quality colloidal crystals by cycling at the fundamental time scale for local defect rearrangements; such understanding of dynamics and kinetics can be applied for reconfigurable colloidal assembly.

5.
ACS Appl Mater Interfaces ; 10(1): 900-908, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29211438

RESUMO

Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10-8 A/cm2) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

6.
ACS Appl Mater Interfaces ; 6(17): 15105-12, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25127290

RESUMO

In this work, we present the use of reduced graphene oxide (rGO) as the counter electrode materials in dye-sensitized solar cells (DSSCs). rGO was first deposited on a fluorine-doped tin oxide glass substrate by screen-printing, followed by post-treatment to remove excessive organic additives. We investigated the effect of atmospheric pressure plasma jet (APPJ) treatment on the DSSC performance. A power conversion efficiency of 5.19% was reached when DSSCs with an rGO counter electrode were treated by APPJs in the ambient air for a few seconds. For comparison, it requires a conventional calcination process at 400 °C for 15 min to obtain comparable efficiency. Scanning electron micrographs show that the APPJ treatment modifies the rGO structure, which may reduce its conductivity in part but simultaneously greatly enhances its catalytic activity. Combined with the rapid removal of organic additives by the highly reactive APPJ, DSSCs with APPJ-treated rGO counter electrode show comparable efficiencies to furnace-calcined rGO counter electrodes with greatly reduced process time. This ultrashort process time renders an estimated energy consumption per unit area of 1.1 kJ/cm(2), which is only one-third of that consumed in a conventional furnace calcination process. This new methodology thus saves energy, cost, and time, which is greatly beneficial to future mass production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA