Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(5): 926-937.e4, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387461

RESUMO

During transcription elongation, NusG aids RNA polymerase by inhibiting pausing, promoting anti-termination on rRNA operons, coupling transcription with translation on mRNA genes, and facilitating Rho-dependent termination. Despite extensive work, the in vivo functional allocation and spatial distribution of NusG remain unknown. Using single-molecule tracking and super-resolution imaging in live E. coli cells, we found NusG predominantly in a chromosome-associated population (binding to RNA polymerase in elongation complexes) and a slowly diffusing population complexed with the 30S ribosomal subunit; the latter provides a "30S-guided" path for NusG into transcription elongation. Only ∼10% of NusG is fast diffusing, with its mobility suggesting non-specific interactions with DNA for >50% of the time. Antibiotic treatments and deletion mutants revealed that chromosome-associated NusG participates mainly in rrn anti-termination within phase-separated transcriptional condensates and in transcription-translation coupling. This study illuminates the multiple roles of NusG and offers a guide on dissecting multi-functional machines via in vivo imaging.


Assuntos
Proteínas de Escherichia coli , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/química , Transcrição Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Bactérias/genética
2.
Mol Cell ; 81(7): 1499-1514.e6, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621478

RESUMO

Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%-99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética
3.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
4.
Mol Cell ; 70(1): 60-71.e15, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29606590

RESUMO

Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Fidaxomicina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/ultraestrutura , Fidaxomicina/química , Fidaxomicina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Relação Estrutura-Atividade
5.
Q Rev Biophys ; 56: e3, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198943

RESUMO

Although viral protein structure and replication mechanisms have been explored extensively with X-ray crystallography, cryo-electron microscopy, and population imaging studies, these methods are often not able to distinguish dynamic conformational changes in real time. Single-molecule fluorescence resonance energy transfer (smFRET) offers unique insights into interactions and states that may be missed in ensemble studies, such as nucleic acid or protein structure, and conformational transitions during folding, receptor-ligand interactions, and fusion. We discuss the application of smFRET to the study of viral protein conformational dynamics, with a particular focus on viral glycoprotein dynamics, viral helicases, proteins involved in HIV reverse transcription, and the influenza RNA polymerase. smFRET experiments have played a crucial role in deciphering conformational changes in these processes, emphasising the importance of smFRET as a tool to help elucidate the life cycle of viral pathogens and identify key anti-viral targets.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ácidos Nucleicos , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia Crioeletrônica , Conformação Proteica , Proteínas Virais
6.
EMBO J ; 40(6): e104683, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33620739

RESUMO

Regulatory switches are wide spread in many biological systems. Uniquely among them, the switch of the bacterial flagellar motor is not an on/off switch but rather controls the motor's direction of rotation in response to binding of the signaling protein CheY. Despite its extensive study, the molecular mechanism underlying this switch has remained largely unclear. Here, we resolved the functions of each of the three CheY-binding sites at the switch in E. coli, as well as their different dependencies on phosphorylation and acetylation of CheY. Based on this, we propose that CheY motor switching activity is potentiated upon binding to the first site. Binding of potentiated CheY to the second site produces unstable switching and at the same time enables CheY binding to the third site, an event that stabilizes the switched state. Thereby, this mechanism exemplifies a unique combination of tight motor regulation with inherent switching flexibility.


Assuntos
Escherichia coli/fisiologia , Flagelos/metabolismo , Locomoção/fisiologia , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas de Bactérias , Proteínas de Escherichia coli , Ligação Proteica/fisiologia
7.
PLoS Pathog ; 19(6): e1011484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390113

RESUMO

Many viruses form highly pleomorphic particles. In influenza, virion structure is of interest not only in the context of virus assembly, but also because pleomorphic variations may correlate with infectivity and pathogenicity. We have used fluorescence super-resolution microscopy combined with a rapid automated analysis pipeline, a method well-suited to the study of large numbers of pleomorphic structures, to image many thousands of individual influenza virions; gaining information on their size, morphology and the distribution of membrane-embedded and internal proteins. We observed broad phenotypic variability in filament size, and Fourier transform analysis of super-resolution images demonstrated no generalized common spatial frequency patterning of HA or NA on the virion surface, suggesting a model of virus particle assembly where the release of progeny filaments from cells occurs in a stochastic way. We also showed that viral RNP complexes are located preferentially within Archetti bodies when these were observed at filament ends, suggesting that these structures may play a role in virus transmission. Our approach therefore offers exciting new insights into influenza virus morphology and represents a powerful technique that is easily extendable to the study of pleomorphism in other pathogenic viruses.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Montagem de Vírus , Vírion
8.
Nucleic Acids Res ; 51(15): 8085-8101, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37351576

RESUMO

Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1-2 rrn operons.


Assuntos
Escherichia coli , Óperon de RNAr , Escherichia coli/metabolismo , Óperon de RNAr/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , RNA Ribossômico/genética
9.
Mol Cell ; 63(6): 939-50, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27618490

RESUMO

In bacteria, RNA polymerase (RNAP) initiates transcription by synthesizing short transcripts that are either released or extended to allow RNAP to escape from the promoter. The mechanism of initial transcription is unclear due to the presence of transient intermediates and molecular heterogeneity. Here, we studied initial transcription on a lac promoter using single-molecule fluorescence observations of DNA scrunching on immobilized transcription complexes. Our work revealed a long pause ("initiation pause," ∼20 s) after synthesis of a 6-mer RNA; such pauses can serve as regulatory checkpoints. Region sigma 3.2, which contains a loop blocking the RNA exit channel, was a major pausing determinant. We also obtained evidence for RNA backtracking during abortive initial transcription and for additional pausing prior to escape. We summarized our work in a model for initial transcription, in which pausing is controlled by a complex set of determinants that modulate the transition from a 6- to a 7-nt RNA.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , RNA Mensageiro/genética , Transcrição Gênica , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Óperon Lac , Inibidores da Síntese de Ácido Nucleico/farmacologia , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Rifampina/farmacologia , Imagem Individual de Molécula/métodos , Fatores de Tempo
10.
Chemphyschem ; 24(12): e202300175, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37043705

RESUMO

Photobleaching of fluorescent probes limits the observation span of typical single-molecule fluorescence measurements and hinders observation of dynamics at long timescales. Here, we present a general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule. Our strategy allows observation of near-continuous single-molecule fluorescence for more than an hour, a timescale two orders of magnitude longer than the typical photobleaching time of single fluorophores under our conditions. Using two orthogonal sequences, we show that our method is adaptable to Förster Resonance Energy Transfer (FRET) and that can be used to study the conformational dynamics of dynamic structures, such as DNA Holliday junctions, for extended periods. By adjusting the temporal resolution and observation span, our approach enables capturing the conformational dynamics of proteins and nucleic acids over a wide range of timescales.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Nanotecnologia/métodos , DNA/química , Microscopia de Fluorescência/métodos
11.
Nucleic Acids Res ; 49(5): 2790-2802, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33589919

RESUMO

The RNA polymerase (RNAP) clamp, a mobile structural element conserved in RNAP from all domains of life, has been proposed to play critical roles at different stages of transcription. In previous work, we demonstrated using single-molecule Förster resonance energy transfer (smFRET) that RNAP clamp interconvert between three short-lived conformational states (lifetimes ∼ 0.3-0.6 s), that the clamp can be locked into any one of these states by small molecules, and that the clamp stays closed during initial transcription and elongation. Here, we extend these studies to obtain a comprehensive understanding of clamp dynamics under conditions RNAP may encounter in living cells. We find that the RNAP clamp can populate long-lived conformational states (lifetimes > 1.0 s) and can switch between these long-lived states and the previously observed short-lived states. In addition, we find that clamp motions are increased in the presence of molecular crowding, are unchanged in the presence of elevated monovalent-cation concentrations, and are reduced in the presence of elevated divalent-cation concentrations. Finally, we find that RNAP bound to non-specific DNA predominantly exhibits a closed clamp conformation. Our results raise the possibility of additional regulatory checkpoints that could affect clamp dynamics and consequently could affect transcription and transcriptional regulation.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Cátions Bivalentes , Cátions Monovalentes , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência , Polietilenoglicóis/química , Conformação Proteica
12.
Proc Natl Acad Sci U S A ; 117(27): 15642-15649, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571927

RESUMO

The RNA polymerase (RNAP) trigger loop (TL) is a mobile structural element of the RNAP active center that, based on crystal structures, has been proposed to cycle between an "unfolded"/"open" state that allows an NTP substrate to enter the active center and a "folded"/"closed" state that holds the NTP substrate in the active center. Here, by quantifying single-molecule fluorescence resonance energy transfer between a first fluorescent probe in the TL and a second fluorescent probe elsewhere in RNAP or in DNA, we detect and characterize TL closing and opening in solution. We show that the TL closes and opens on the millisecond timescale; we show that TL closing and opening provides a checkpoint for NTP complementarity, NTP ribo/deoxyribo identity, and NTP tri/di/monophosphate identity, and serves as a target for inhibitors; and we show that one cycle of TL closing and opening typically occurs in each nucleotide addition cycle in transcription elongation.


Assuntos
RNA Polimerases Dirigidas por DNA/química , DNA/química , RNA/química , Transcrição Gênica , Domínio Catalítico , DNA/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Nucleotídeos , Conformação Proteica , Dobramento de Proteína , RNA/genética , Imagem Individual de Molécula
14.
Nat Methods ; 15(9): 669-676, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171252

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Laboratórios/normas , Reprodutibilidade dos Testes
15.
Nucleic Acids Res ; 47(12): 6466-6477, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31032520

RESUMO

The viral RNA (vRNA) genome of influenza viruses is replicated by the RNA-dependent RNA polymerase (RNAP) via a complementary RNA (cRNA) intermediate. The vRNA promoter can adopt multiple conformations when bound by the RNAP. However, the dynamics, determinants, and biological role of these conformations are unknown; further, little is known about cRNA promoter conformations. To probe the RNA conformations adopted during initial replication, we monitored single, surface-immobilized vRNA and cRNA initiation complexes in real-time. Our results show that, while the 3' terminus of the vRNA promoter exists in dynamic equilibrium between pre-initiation and initiation conformations, the cRNA promoter exhibited very limited dynamics. Two residues in the proximal 3' region of the cRNA promoter (residues absent in the vRNA promoter) allowed the cRNA template strand to reach further into the active site, limiting promoter dynamics. Our results highlight promoter-dependent differences in influenza initiation mechanisms, and advance our understanding of virus replication.


Assuntos
Orthomyxoviridae/genética , RNA Viral/biossíntese , RNA Viral/química , Replicação Viral , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Orthomyxoviridae/fisiologia
16.
Nucleic Acids Res ; 47(20): 10788-10800, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31544938

RESUMO

DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets; some proteins recognise specific DNA sequences, while others interact with specific DNA structures. While sequence-specific DNA binding has been studied extensively, structure-specific recognition mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I Klenow Fragment (Pol) substrates both alone and in DNA-Pol complexes. Using a docking approach based on a network of 73 distances collected using single-molecule FRET, we determined a novel solution structure of the single-nucleotide-gapped DNA-Pol binary complex. The structure resembled existing crystal structures with regards to the downstream primer-template DNA substrate, and revealed a previously unobserved sharp bend (∼120°) in the DNA substrate; this pronounced bend was present in living cells. MD simulations and single-molecule assays also revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Further, experiments and coarse-grained modelling showed the substrate alone frequently adopts bent conformations with 1-2 nt fraying around the gap, suggesting a mechanism wherein Pol recognises a pre-bent, partially-melted conformation of gapped DNA. We propose a general mechanism for substrate recognition by structure-specific enzymes driven by protein sensing of the conformational dynamics of their DNA substrates.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Sequência de Bases , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Especificidade por Substrato
17.
Nucleic Acids Res ; 46(14): 7284-7295, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29878276

RESUMO

RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/química , Conformação Proteica , Transcrição Gênica , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Ligação Proteica , Estabilidade Proteica
18.
Nucleic Acids Res ; 46(2): 677-688, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29177430

RESUMO

Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex subsequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear. To address the conformational landscape and transitions in transcription initiation, we applied single-molecule Förster resonance energy transfer (smFRET) on immobilized Escherichia coli transcription open complexes. Our results revealed the existence of two stable states within RNAP-DNA complexes in which the promoter DNA appears to adopt closed and partially open conformations, and we observed large-scale transitions in which the transcription bubble fluctuated between open and closed states; these transitions, which occur roughly on the 0.1 s timescale, are distinct from the millisecond-timescale dynamics previously observed within diffusing open complexes. Mutational studies indicated that the σ70 region 3.2 of the RNAP significantly affected the bubble dynamics. Our results have implications for many steps of transcription initiation, and support a bend-load-open model for the sequence of transitions leading to bubble opening during open complex formation.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Iniciação da Transcrição Genética , DNA Bacteriano/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Biophys J ; 117(11): 2141-2153, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31711608

RESUMO

Single-molecule fluorescence has been highly instrumental in elucidating interactions and dynamics of biological molecules in the past two decades. Single-molecule fluorescence experiments usually rely on one of two detection geometries, either confocal point-detection or wide-field area detection, typically in a total internal reflection fluorescence (TIRF) format. However, each of these techniques suffers from fundamental drawbacks that limit their application. In this work, we present a new technique, solution wide-field imaging (SWiFi) of diffusing molecules, as an alternative to the existing methods. SWiFi is a simple extension to existing objective-type TIRF microscopes that allows wide-field observations of fast-diffusing molecules down to single fluorophores without the need of tethering the molecules to the surface. We demonstrate that SWiFi enables high-throughput ratiometric measurements with several thousands of individual data points per minute on double-stranded DNA standard (dsDNA) samples containing Förster resonance energy transfer pairs. We further display the capabilities of SWiFi by reporting on mobility and ratiometric characterization of fluorescent nanodiamonds, DNA Holliday junctions, and protein-DNA interactions. The ability of SWiFi for high-throughput, ratiometric measurements of fast-diffusing species renders it a valuable tool for the single-molecule research community by bridging between confocal and TIRF detection geometries in a simple and efficient way.


Assuntos
Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos , DNA Cruciforme/química , DNA Cruciforme/genética , RNA Polimerases Dirigidas por DNA/genética , Difusão , Transferência Ressonante de Energia de Fluorescência , Regiões Promotoras Genéticas/genética
20.
Nucleic Acids Res ; 45(2): 926-937, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27625389

RESUMO

Transfer RNA (tRNA) links messenger RNA nucleotide sequence with amino acid sequence during protein synthesis. Despite the importance of tRNA for translation, its subcellular distribution and diffusion properties in live cells are poorly understood. Here, we provide the first direct report on tRNA diffusion localization in live bacteria. We internalized tRNA labeled with organic fluorophores into live bacteria, applied single-molecule fluorescence imaging with single-particle tracking and localized and tracked single tRNA molecules over seconds. We observed two diffusive species: fast (with a diffusion coefficient of ∼8 µm2/s, consistent with free tRNA) and slow (consistent with tRNA bound to larger complexes). Our data indicate that a large fraction of internalized fluorescent tRNA (>70%) appears to diffuse freely in the bacterial cell. We also obtained the subcellular distribution of fast and slow diffusing tRNA molecules in multiple cells by normalizing for cell morphology. While fast diffusing tRNA is not excluded from the bacterial nucleoid, slow diffusing tRNA is localized to the cell periphery (showing a 30% enrichment versus a uniform distribution), similar to non-uniform localizations previously observed for mRNA and ribosomes.


Assuntos
Bactérias/genética , RNA de Transferência/metabolismo , RNA/metabolismo , Bactérias/metabolismo , Difusão , Escherichia coli/genética , Escherichia coli/metabolismo , Imagem Molecular , Biossíntese de Proteínas , Transporte de RNA , RNA Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA