Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cancer ; 13: 146, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24913494

RESUMO

BACKGROUND: High androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NFκB and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NFκB and Hh signaling. Here we investigate the interaction of MID1 and AR. METHODS: AR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively. RESULTS: The microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner. CONCLUSION: Promotion of AR, in addition to enhancement of the Akt-, NFκB-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer.


Assuntos
Proteínas dos Microtúbulos/genética , Neoplasias Hormônio-Dependentes/genética , Proteínas Nucleares/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição/genética , Androgênios/metabolismo , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas dos Microtúbulos/biossíntese , Neoplasias Hormônio-Dependentes/patologia , Proteínas Nucleares/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição/biossíntese , Ubiquitina-Proteína Ligases
2.
J Biol Chem ; 286(46): 39945-57, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21930711

RESUMO

We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells.


Assuntos
Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/biossíntese , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Esôfago/anormalidades , Esôfago/metabolismo , Células HeLa , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipospadia/genética , Hipospadia/metabolismo , Proteínas dos Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
3.
Virology ; 378(2): 371-6, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18603277

RESUMO

The TOJ3 gene was originally identified on the basis of its specific activation in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17). Overexpression of TOJ3 induces cellular transformation of embryonic avian fibroblasts, revealing an intrinsic oncogenic potential. Transforming activity has also been demonstrated for MSP58, the human homolog of TOJ3, and oncogenic cell transformation by MSP58 is specifically inhibited by the tumor suppressor PTEN. To investigate the mechanism of aberrant TOJ3 gene activation in jun-transformed fibroblasts, the entire quail TOJ3 gene including 13 exons and the 5' regulatory region was isolated. Functional analyses of the promoter by transcriptional transactivation assays revealed that the specific induction of TOJ3 is mediated by a cluster of three noncanonical AP-1 binding motifs (5'-CAGCTCA-3' or 5'-CACCTCA-3') which share the 3' half-site with the consensus motif (5'-TGA(C)/(G)TCA-3'). Electrophoretic mobility shift assays and chromatin immunoprecipitation analyses showed that Jun binds to these motifs with an affinity similar to that observed for binding to an AP-1 consensus site. Noncanonical binding sites are also present in the chicken and human TOJ3/MSP58 promoter regions. These results confirm and extend the previous observation that TOJ3 represents an immediate effector gene of Jun and may point to an essential role of TOJ3/MSP58 in carcinogenesis involving aberrant AP-1 expression.


Assuntos
Proteínas Aviárias/biossíntese , Proteínas Nucleares/biossíntese , Proteína Oncogênica p65(gag-jun)/metabolismo , Proteínas Virais/metabolismo , Animais , Vírus do Sarcoma Aviário/fisiologia , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Sequência Consenso , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA