RESUMO
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Assuntos
Cisteína , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cisteína/metabolismo , Cisteína/química , Ligantes , Melanoma/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Oxirredução , Transdução de Sinais , Fatores de Transcrição SOXE/química , Fatores de Transcrição SOXE/metabolismoRESUMO
Estrogen receptor alpha (ER)-positive breast cancer is responsible for over 60% of breast cancer cases in the U.S. Among patients diagnosed with early-stage ER+ disease, 1/3 will experience recurrence despite treatment with adjuvant endocrine therapy. ER is a nuclear hormone receptor responsible for estrogen-driven tumor growth. ER transcriptional activity is modulated by interactions with coregulators. Dysregulation of the levels of these coregulators is involved in the development of endocrine resistance. To identify ER interactors that modulate transcriptional activity in breast cancer, we utilized biotin ligase proximity profiling of ER interactomes. Mass spectrometry analysis revealed tripartite motif containing 33 (TRIM33) as an estrogen-dependent interactor of ER. shRNA knockdown showed that TRIM33 promoted ER transcriptional activity and estrogen-induced cell growth. Despite its known role as an E3 ubiquitin ligase, TRIM33 increased the stability of endogenous ER in breast cancer cells. TRIM33 offers a novel target for inhibiting estrogen-induced cancer cell growth, particularly in cases of endocrine resistance driven by ER (ESR1) gene amplification or overexpression.
RESUMO
Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.
Assuntos
Mieloma Múltiplo , Neuroblastoma , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Mieloma Múltiplo/genética , Regulação da Expressão Gênica , Nucleossomos , Neuroblastoma/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismoRESUMO
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
RESUMO
The enhancer factors CREB-binding protein (CBP) and p300 (also known as KAT3A and KAT3B) maintain gene expression programs through lysine acetylation of chromatin and transcriptional regulators and by scaffolding functions mediated by several protein-protein interaction domains. Small molecule inhibitors that target some of these domains have been developed; however, they cannot completely ablate p300/CBP function in cells. Here we describe a chemical degrader of p300/CBP, dCBP-1. Leveraging structures of ligand-bound p300/CBP domains, we use in silico modeling of ternary complex formation with the E3 ubiquitin ligase cereblon to enable degrader design. dCBP-1 is exceptionally potent at killing multiple myeloma cells and can abolish the enhancer that drives MYC oncogene expression. As an efficient degrader of this unique class of acetyltransferases, dCBP-1 is a useful tool alongside domain inhibitors for dissecting the mechanism by which these factors coordinate enhancer activity in normal and diseased cells.