Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(38): 23782-23793, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907944

RESUMO

Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.3 strain). We identified a predominant type III interferon (IFN)-mediated innate response to HuNoV infection. Replication of both strains is sensitive to exogenous addition of IFNs, suggesting the potential of IFNs as therapeutics. To obtain insight into IFN pathway genes that play a role in the antiviral response to HuNoVs, we developed knockout (KO) HIE lines for IFN alpha and lambda receptors and the signaling molecules, MAVS, STAT1, and STAT2 An unexpected differential response of enhanced replication and virus spread was observed for GII.3, but not the globally dominant GII.4 HuNoV in STAT1-knockout HIEs compared to parental HIEs. These results indicate cellular IFN responses restrict GII.3 but not GII.4 replication. The strain-specific sensitivities of innate responses against HuNoV replication provide one explanation for why GII.4 infections are more widespread and highlight strain specificity as an important factor in HuNoV biology. Genetically modified HIEs for innate immune genes are useful tools for studying immune responses to viral or microbial pathogens.


Assuntos
Infecções por Caliciviridae , Interações Hospedeiro-Patógeno/imunologia , Interferons , Intestinos , Norovirus , Sistemas CRISPR-Cas , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Humanos , Interferons/genética , Interferons/metabolismo , Intestinos/imunologia , Intestinos/virologia , Modelos Biológicos , Norovirus/genética , Norovirus/imunologia , Norovirus/patogenicidade , Organoides/imunologia , Organoides/virologia , Análise de Sequência de RNA , Transcriptoma/genética , Replicação Viral
2.
Proc Natl Acad Sci U S A ; 117(3): 1700-1710, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896578

RESUMO

Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Intestinos/virologia , Norovirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Ceramidas/farmacologia , Ácido Glicoquenodesoxicólico , Humanos , Receptores Acoplados a Proteínas G , Esfingomielina Fosfodiesterase/metabolismo , Receptores de Esfingosina-1-Fosfato
3.
Gastroenterology ; 157(6): 1544-1555.e3, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31473225

RESUMO

BACKGROUND & AIMS: Sperm flagellar 1 (also called CLAMP) is a microtubule-associated protein that regulates microtubule dynamics and planar cell polarity in multi-ciliated cells. We investigated the localization and function of sperm flagellar 1, or CLAMP, in human intestinal epithelia cells (IECs). METHODS: We performed studies with SKCO-15 and human intestinal enteroids established from biopsies from different intestinal segments (duodenal, jejunum, ileal, and colon) of a single donor. Enteroids were induced to differentiation after incubation with growth factors. The distribution of endogenous CLAMP in IECs was analyzed by immunofluorescence microscopy using total internal reflection fluorescence-ground state depletion and confocal microscopy. CLAMP localization was followed during the course of intestinal epithelial cell polarization as cells progressed from flat to compact, confluent monolayers. Protein interactions with endogenous CLAMP were determined in SKCO-15 cells using proximity ligation assays and co-immunoprecipitation. CLAMP was knocked down in SKCO-15 monolayers using small hairpin RNAs and cells were analyzed by immunoblot and immunofluorescence microscopy. The impact of CLAMP knock-down in migrating SKCO-15 cells was assessed using scratch-wound assays. RESULTS: CLAMP bound to actin and apical junctional complex proteins but not microtubules in IECs. In silico analysis predicted the calponin-homology domain of CLAMP to contain conserved amino acids required for actin binding. During IEC polarization, CLAMP distribution changed from primarily basal stress fibers and cytoplasm in undifferentiated cells to apical membranes and microvilli in differentiated monolayers. CLAMP accumulated in lamellipodia and filopodia at the leading edge of migrating cells in association with actin. CLAMP knock-down reduced the number of filopodia, perturbed filopodia polarity, and altered the organization of actin filaments within lamellipodia. CONCLUSIONS: CLAMP is an actin-binding protein, rather than a microtubule-binding protein, in IECs. CLAMP distribution changes during intestinal epithelial cell polarization, regulates the formation of filopodia, and appears to assist in the organization of actin bundles within lamellipodia of migrating IECs. Studies are needed to define the CLAMP domains that interact with actin and whether its loss from IECs affects intestinal function.


Assuntos
Actinas/metabolismo , Movimento Celular , Mucosa Intestinal/citologia , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Colo/citologia , Colo/metabolismo , Células Epiteliais , Humanos , Mucosa Intestinal/metabolismo , Microtúbulos/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(4): E570-E579, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069942

RESUMO

The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/ß) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.


Assuntos
Interferons/genética , Intestino Delgado/imunologia , Infecções por Rotavirus/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Imunidade Inata , Interferons/imunologia , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Análise de Sequência de RNA , Replicação Viral
5.
J Virol ; 90(1): 43-56, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446608

RESUMO

UNLABELLED: Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE: Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures.


Assuntos
Intestino Delgado/virologia , Modelos Teóricos , Técnicas de Cultura de Órgãos/métodos , Infecções por Rotavirus/patologia , Infecções por Rotavirus/virologia , Rotavirus/fisiologia , Replicação Viral , Humanos , Intestino Delgado/fisiologia
6.
J Gen Virol ; 97(9): 2291-2300, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412790

RESUMO

Human noroviruses (HuNoVs) can often cause chronic infections in solid organ and haematopoietic stem cell transplant (HSCT) patients. Based on histopathological changes observed during HuNoV infections, the intestine is the presumed site of virus replication in patients; however, the cell types infected by HuNoVs remain unknown. The objective of this study was to characterize histopathological changes during HuNoV infection and to determine the cell types that may be permissive for HuNoV replication in transplant patients. We analysed biopsies from HuNoV-infected and non-infected (control) transplant patients to assess histopathological changes in conjunction with detection of HuNoV antigens to identify the infected cell types. HuNoV infection in immunocompromised patients was associated with histopathological changes such as disorganization and flattening of the intestinal epithelium. The HuNoV major capsid protein, VP1, was detected in all segments of the small intestine, in areas of biopsies that showed histopathological changes. Specifically, VP1 was detected in enterocytes, macrophages, T cells and dendritic cells. HuNoV replication was investigated by detecting the non-structural proteins, RdRp and VPg. We detected RdRp and VPg along with VP1 in duodenal and jejunal enterocytes. These results provide critical insights into histological changes due to HuNoV infection in immunocompromised patients and propose human enterocytes as a physiologically relevant cell type for HuNoV cultivation.


Assuntos
Biópsia , Infecções por Caliciviridae/virologia , Hospedeiro Imunocomprometido , Intestinos/virologia , Norovirus/isolamento & purificação , Transplantados , Antígenos Virais/análise , Infecções por Caliciviridae/patologia , Proteínas do Capsídeo/análise , Doença Crônica , Histocitoquímica , Humanos , Imuno-Histoquímica , Intestinos/patologia , Microscopia
7.
Development ; 138(10): 1957-66, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21490066

RESUMO

In vitro data suggest that the human RbAp46 and RbAp48 genes encode proteins involved in multiple chromatin remodeling complexes and are likely to play important roles in development and tumor suppression. However, to date, our understanding of the role of RbAp46/RbAp48 and its homologs in metazoan development and disease has been hampered by a lack of insect and mammalian mutant models, as well as redundancy due to multiple orthologs in most organisms studied. Here, we report the first mutations in the single Drosophila RbAp46/RbAp48 homolog Caf1, identified as strong suppressors of a senseless overexpression phenotype. Reduced levels of Caf1 expression result in flies with phenotypes reminiscent of Hox gene misregulation. Additionally, analysis of Caf1 mutant tissue suggests that Caf1 plays important roles in cell survival and segment identity, and loss of Caf1 is associated with a reduction in the Polycomb Repressive Complex 2 (PRC2)-specific histone methylation mark H3K27me3. Taken together, our results suggest suppression of senseless overexpression by mutations in Caf1 is mediated by participation of Caf1 in PRC2-mediated silencing. More importantly, our mutant phenotypes confirm that Caf1-mediated silencing is vital to Drosophila development. These studies underscore the importance of Caf1 and its mammalian homologs in development and disease.


Assuntos
Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Padronização Corporal/genética , Sobrevivência Celular/genética , Drosophila/metabolismo , Epigênese Genética , Olho/crescimento & desenvolvimento , Genes Homeobox , Genes de Insetos , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Fenótipo , Complexo Repressor Polycomb 1 , Transdução de Sinais , Fatores de Transcrição/genética
8.
Nat Commun ; 14(1): 1148, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854760

RESUMO

Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown. Here, using nontransformed human jejunal enteroids (HIEs) that recapitulate the physiology of the gastrointestinal tract, we show that infectious GII.4 virions and virus-like particles are endocytosed using a unique combination of endosomal acidification-dependent clathrin-independent carriers (CLIC), acid sphingomyelinase (ASM)-mediated lysosomal exocytosis, and membrane wound repair pathways. We found that besides the known interaction of the viral capsid Protruding (P) domain with host glycans, the Shell (S) domain interacts with both galectin-3 (gal-3) and apoptosis-linked gene 2-interacting protein X (ALIX), to orchestrate GII.4 cell entry. Recognition of the viral and cellular determinants regulating HuNoV entry provides insight into the infection process of a non-enveloped virus highlighting unique pathways and targets for developing effective therapeutics.


Assuntos
Membrana Celular , Norovirus , Internalização do Vírus , Humanos , Clatrina , Norovirus/fisiologia , Transdução de Sinais , Membrana Celular/virologia
9.
Methods Mol Biol ; 2052: 373-402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31452173

RESUMO

Conventional cell cultures utilizing transformed or immortalized cell lines or primary human epithelial cells have played a fundamental role in furthering our understanding of Cryptosporidium infection. However, they remain inadequate with respect to their inability to emulate in vivo conditions, support long-term growth, and complete the life cycle of the parasite. Previously, we developed a 3D silk scaffold-based model using transformed human intestinal epithelial cells (IECs). This model supported C. parvum infection for up to 2 weeks and resulted in completion of the life cycle of the parasite. However, transformed IECs are not representative of primary human IEC.Human intestinal enteroids (HIEs) are cultures derived from crypts that contain Lgr5+ stem cells isolated from human biopsies or surgical intestinal tissues; these established multicellular cultures can be induced to differentiate into enterocytes, enteroendocrine cells, goblet cells, Paneth cells, and tuft cells. HIEs better represent human intestinal structure and function than immortalized IEC lines. Recently, significant progress has been made in the development of technologies to culture HIEs in vitro. When grown in a 3D matrix, HIEs provide a spatial organization resembling the native human intestinal epithelium. Additionally, they can be dissociated and grown as monolayers in tissue culture plates, permeable supports or silk scaffolds that enable mechanistic studies of pathogen infections. They can also be co-cultured with other human cells such as macrophages and myofibroblasts. The HIEs grown in these novel culture systems recapitulate the physiology, the 3D architecture, and functional diversity of native intestinal epithelium and provide a powerful and promising new tool to study Cryptosporidium-host cell interactions and screen for interventions ex vivo. In this chapter, we describe the 3D silk scaffold-based model using transformed IEC co-cultured with human intestinal myofibroblasts and 2D and 3D HIE-derived models of Cryptosporidium, also co-cultured with human intestinal myofibroblasts.


Assuntos
Técnicas de Cultura de Células/métodos , Cryptosporidium/crescimento & desenvolvimento , Células Epiteliais/parasitologia , Mucosa Intestinal/parasitologia , Organoides , Engenharia Tecidual/métodos , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Cryptosporidium/genética , Cryptosporidium/patogenicidade , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Microscopia Eletrônica de Varredura , Miofibroblastos , Oocistos/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Esporozoítos/isolamento & purificação , Células-Tronco/citologia , Células-Tronco/metabolismo , Alicerces Teciduais , Fluxo de Trabalho
10.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184242

RESUMO

Human noroviruses (HuNoVs) are the leading cause of nonbacterial gastroenteritis worldwide. Histo-blood group antigen (HBGA) expression is an important susceptibility factor for HuNoV infection based on controlled human infection models and epidemiologic studies that show an association of secretor status with infection caused by several genotypes. The fucosyltransferase 2 gene (FUT2) affects HBGA expression in intestinal epithelial cells; secretors express a functional FUT2 enzyme, while nonsecretors lack this enzyme and are highly resistant to infection and gastroenteritis caused by many HuNoV strains. These epidemiologic associations are confirmed by infections in stem cell-derived human intestinal enteroid (HIE) cultures. GII.4 HuNoV does not replicate in HIE cultures derived from nonsecretor individuals, while HIEs from secretors are permissive to infection. However, whether FUT2 expression alone is critical for infection remains unproven, since routinely used secretor-positive transformed cell lines are resistant to HuNoV replication. To evaluate the role of FUT2 in HuNoV replication, we used CRISPR or overexpression to genetically manipulate FUT2 gene function to produce isogenic HIE lines with or without FUT2 expression. We show that FUT2 expression alone affects both HuNoV binding to the HIE cell surface and susceptibility to HuNoV infection. These findings indicate that initial binding to a molecule(s) glycosylated by FUT2 is critical for HuNoV infection and that the HuNoV receptor is present in nonsecretor HIEs. In addition to HuNoV studies, these isogenic HIE lines will be useful tools to study other enteric microbes where infection and/or disease outcome is associated with secretor status.IMPORTANCE Several studies have demonstrated that secretor status is associated with susceptibility to human norovirus (HuNoV) infection; however, previous reports found that FUT2 expression is not sufficient to allow infection with HuNoV in a variety of continuous laboratory cell lines. Which cellular factor(s) regulates susceptibility to HuNoV infection remains unknown. We used genetic manipulation of HIE cultures to show that secretor status determined by FUT2 gene expression is necessary and sufficient to support HuNoV replication based on analyses of isogenic lines that lack or express FUT2. Fucosylation of HBGAs is critical for initial binding and for modification of another putative receptor(s) in HIEs needed for virus uptake or uncoating and necessary for successful infection by GI.1 and several GII HuNoV strains.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/genética , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Intestino Delgado/enzimologia , Organoides/virologia , Predisposição Genética para Doença , Humanos , Intestino Delgado/citologia , Intestino Delgado/virologia , Norovirus/patogenicidade , Organoides/enzimologia , Replicação Viral , Galactosídeo 2-alfa-L-Fucosiltransferase
11.
Methods Mol Biol ; 1576: 229-247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28361480

RESUMO

Human rotavirus (HRV) and human norovirus (HuNoV) infections are recognized as the most common causes of epidemic and sporadic cases of gastroenteritis worldwide. The study of these two human gastrointestinal viruses is important for understanding basic virus-host interactions and mechanisms of pathogenesis and to establish models to evaluate vaccines and treatments. Despite the introduction of live-attenuated vaccines to prevent life-threatening HRV-induced disease, the burden of HRV illness remains significant in low-income and less-industrialized countries, and small animal models or ex vivo models to study HRV infections efficiently are lacking. Similarly, HuNoVs remained non-cultivatable until recently. With the advent of non-transformed human intestinal enteroid (HIE) cultures, we are now able to culture and study both clinically relevant HRV and HuNoV in a biologically relevant human system. Methods described here will allow investigators to use these new culture techniques to grow HRV and HuNoV and analyze new aspects of virus replication and pathogenesis.


Assuntos
Infecções por Caliciviridae/virologia , Técnicas de Cultura de Células/métodos , Gastroenteropatias/virologia , Intestinos/virologia , Organoides/virologia , Infecções por Rotavirus/virologia , Replicação Viral , Infecções por Caliciviridae/patologia , Células Cultivadas , Gastroenteropatias/patologia , Trato Gastrointestinal/virologia , Humanos , Intestinos/patologia , Norovirus/isolamento & purificação , Organoides/patologia , Rotavirus/isolamento & purificação , Infecções por Rotavirus/patologia
12.
Cell Mol Gastroenterol Hepatol ; 8(2): 209-229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31029854

RESUMO

BACKGROUND & AIMS: Enteroendocrine cells (EECs) are specialized epithelial cells that produce molecules vital for intestinal homeostasis, but because of their limited numbers, in-depth functional studies have remained challenging. Human intestinal enteroids (HIEs) that are derived from intestinal crypt stem cells are biologically relevant in an in vitro model of the intestinal epithelium. HIEs contain all intestinal epithelial cell types; however, similar to the intestine, HIEs spontaneously produce few EECs, which limits their study. METHODS: To increase the number of EECs in HIEs, we used lentivirus transduction to stably engineer jejunal HIEs with doxycycline-inducible expression of neurogenin-3 (NGN3), a transcription factor that drives EEC differentiation (tetNGN3-HIEs). We examined the impact of NGN3 induction on EECs by quantifying the increase in the enterochromaffin cells and other EEC subtypes. We functionally assessed secretion of serotonin and EEC hormones in response to norepinephrine and rotavirus infection. RESULTS: Treating tetNGN3-HIEs with doxycycline induced a dose-dependent increase of chromogranin A (ChgA)-positive and serotonin-positive cells, showing increased enterochromaffin cell differentiation. Despite increased ChgA-positive cells, other differentiated cell types of the epithelium remained largely unchanged by gene expression and immunostaining. RNA sequencing of doxycycline-induced tetNGN3-HIEs identified increased expression of key hormones and enzymes associated with several other EEC subtypes. Doxycycline-induced tetNGN3-HIEs secreted serotonin, monocyte chemoattractant protein-1, glucose-dependent insulinotropic peptide, peptide YY, and ghrelin in response to norepinephrine and rotavirus infection, further supporting the presence of multiple EEC types. CONCLUSIONS: We have combined HIEs and inducible-NGN3 expression to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of EECs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Enteroendócrinas/metabolismo , Hormônios Gastrointestinais/metabolismo , Intestinos , Proteínas do Tecido Nervoso/genética , Via Secretória , Esferoides Celulares , Regulação da Expressão Gênica , Humanos , Modelos Biológicos
13.
Exp Biol Med (Maywood) ; 242(16): 1633-1642, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28534432

RESUMO

Gastrointestinal diseases are a significant health care and economic burden. Prevention and treatment of these diseases have been limited by the available human biologic models. Microphysiological systems comprise organ-specific human cultures that recapitulate many structural, biological, and functional properties of the organ in smaller scale including aspects of flow, shear stress and chemical gradients. The development of intestinal microphysiological system platforms represents a critical component in improving our understanding, prevention, and treatment of gastrointestinal diseases. This minireview discusses: shortcomings of classical cell culture models of the gastrointestinal tract; human intestinal enteroids as a new model and their advantages compared to cell lines; why intestinal microphysiological systems are needed; potential functional uses of intestinal microphysiological systems in areas of drug development and modeling acute and chronic diseases; and current challenges in the development of intestinal microphysiological systems. Impact statement The development of a gastrointestinal MPS has the potential to facilitate the understanding of GI physiology. An ultimate goal is the integration of the intestinal MPS with other organ MPS. The development and characterization of nontransformed human intestinal cultures for use in MPS have progressed significantly since the inception of the MPS program in 2012, and these cultures are a key component of advancing MPS. Continued efforts are needed to optimize MPS to comprehensively and accurately recapitulate the complexity of the intestinal epithelium within intestinal tissue. These systems will need to include peristalsis, flow, and oxygen gradients, with incorporation of vascular, immune, and nerve cells. Regional cellular organization of crypt and villus areas will also be necessary to better model complete intestinal structure.


Assuntos
Gastroenteropatias/patologia , Mucosa Intestinal/fisiologia , Procedimentos Analíticos em Microchip/métodos , Microfluídica/métodos , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos
14.
Mech Dev ; 121(3): 273-86, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15003630

RESUMO

The Notch effector E(spl)M8 is phosphorylated at Ser159 by CK2, a highly conserved Ser/Thr protein kinase. We have used the Gal4-UAS system to assess the role of M8 phosphorylation during bristle and eye morphogenesis by employing a non-phosphorylatable variant (M8SA) or one predicted to mimic the 'constitutively' phosphorylated protein (M8SD). We find that phosphorylation of M8 does not appear to be critical during bristle morphogenesis. In contrast, only M8SD elicits a severe 'reduced eye' phenotype when it is expressed in the morphogenetic furrow of the eye disc. M8SD elicits neural hypoplasia in eye discs, elicits loss of phase-shifted Atonal-positive cells, i.e. the 'founding' R8 photoreceptors, and consequently leads to apoptosis. The ommatidial phenotype of M8SD is similar to that in Nspl/Y; E(spl)D/+ flies. E(spl)D, an allele of m8, encodes a truncated protein known as M8*, which, unlike wild type M8, displays exacerbated antagonism of Atonal via direct protein-protein interactions. In line with this, we find that the M8SD-Atonal interaction appears indistinguishable from that of M8*-Atonal, whereas interaction of M8 or M8SA appears marginal, at best. These results raise the possibility that phosphorylation of M8 (at Ser159) might be required for its ability to mediate 'lateral inhibition' within proneural clusters in the developing retina. This is the first identification of a dominant allele encoding a phosphorylation-site variant of an E(spl) protein. Our studies uncover a novel functional domain that is conserved amongst a subset of E(spl)/Hes repressors in Drosophila and mammals, and suggests a potential role for CK2 during retinal patterning.


Assuntos
Drosophila/embriologia , Olho/embriologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Anticorpos Monoclonais/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Caseína Quinase II , Sequência Consenso , Proteínas de Ligação a DNA/imunologia , Drosophila/anatomia & histologia , Drosophila/enzimologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Proteínas ELAV , Olho/anatomia & histologia , Olho/enzimologia , Morfogênese , Proteínas do Tecido Nervoso , Fenótipo , Fosforilação , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Ribonucleoproteínas/imunologia , Serina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
15.
PLoS One ; 9(7): e102143, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057928

RESUMO

In Drosophila, development of the compound eye is orchestrated by a network of highly conserved transcriptional regulators known as the retinal determination (RD) network. The retinal determination gene eyes absent (eya) is expressed in most cells within the developing eye field, from undifferentiated retinal progenitors to photoreceptor cells whose differentiation begins at the morphogenetic furrow (MF). Loss of eya expression leads to an early block in retinal development, making it impossible to study the role of eya expression during later steps of retinal differentiation. We have identified two new regulatory regions that control eya expression during retinal development. These two enhancers are necessary to maintain eya expression anterior to the MF (eya-IAM) and in photoreceptors (eya-PSE), respectively. We find that deleting these enhancers affects developmental events anterior to the MF as well as retinal differentiation posterior to the MF. In line with previous results, we find that reducing eya expression anterior to the MF affects several early steps during early retinal differentiation, including cell cycle arrest and expression of the proneural gene ato. Consistent with previous observations that suggest a role for eya in cell proliferation during early development we find that deletion of eya-IAM leads to a marked reduction in the size of the adult retinal field. On the other hand, deletion of eya-PSE leads to defects in cone and pigment cell development. In addition we find that eya expression is necessary to activate expression of the cone cell marker Cut and to regulate levels of the Hedgehog pathway effector Ci. In summary, our study uncovers novel aspects of eya-mediated regulation of eye development. The genetic tools generated in this study will allow for a detailed study of how the RD network regulates key steps in eye formation.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras Retinianas Cones/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Organogênese/genética , Células Fotorreceptoras Retinianas Cones/citologia , Epitélio Pigmentado da Retina/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
PLoS One ; 9(2): e89695, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586968

RESUMO

Homeodomain transcription factors of the Sine oculis (SIX) family direct multiple regulatory processes throughout the metazoans. Sine oculis (So) was first characterized in the fruit fly Drosophila melanogaster, where it is both necessary and sufficient for eye development, regulating cell survival, proliferation, and differentiation. Despite its key role in development, only a few direct targets of So have been described previously. In the current study, we aim to expand our knowledge of So-mediated transcriptional regulation in the developing Drosophila eye using ChIP-seq to map So binding regions throughout the genome. We find 7,566 So enriched regions (peaks), estimated to map to 5,952 genes. Using overlap between the So ChIP-seq peak set and genes that are differentially regulated in response to loss or gain of so, we identify putative direct targets of So. We find So binding enrichment in genes not previously known to be regulated by So, including genes that encode cell junction proteins and signaling pathway components. In addition, we analyze a subset of So-bound novel genes in the eye, and find eight genes that have previously uncharacterized eye phenotypes and may be novel direct targets of So. Our study presents a greatly expanded list of candidate So targets and serves as basis for future studies of So-mediated gene regulation in the eye.


Assuntos
Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Drosophila melanogaster/genética , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Disco Óptico/crescimento & desenvolvimento , Disco Óptico/metabolismo , Organogênese/genética
17.
Genom Data ; 2: 153-155, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126519

RESUMO

The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of animal development, and many genes that regulate Drosophila eye formation have homologs implicated in human development and disease. Among these is the homeobox gene sine oculis (so), which encodes a homeodomain transcription factor (TF) that is both necessary for eye development and sufficient to reprogram a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis of So binding to DNA prepared from developing Drosophila eye tissue in order to identify candidate direct targets of So-mediated transcriptional regulation, as described in our recent article [1]. The data are available from NCBI Gene Expression Omnibus (GEO) with the accession number GSE52943. Here we describe the methods, data analysis, and quality control of our So ChIP-seq dataset.

18.
Mol Cell Biochem ; 274(1-2): 133-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16342413

RESUMO

In Drosophila, protein kinase CK2 regulates a diverse array of developmental processes. One of these is cell-fate specification (neurogenesis) wherein CK2 regulates basic-helix-loop-helix (bHLH) repressors encoded by the Enhancer of Split Complex (E(spl)C). Specifically, CK2 phosphorylates and activates repressor functions of E(spl)M8 during eye development. In this study we describe the interaction of CK2 with an E(spl)-related bHLH repressor, Deadpan (Dpn). Unlike E(spl)-repressors which are expressed in cells destined for a non-neural cell fate, Dpn is expressed in the neuronal cells and is thought to control the activity of proneural genes. Dpn also regulates sex-determination by repressing sxl, the primary gene involved in sex differentiation. We demonstrate that Dpn is weakly phosphorylated by monomeric CK2alpha, whereas it is robustly phosphorylated by the embryo-holoenzyme, suggesting a positive role for CK2beta. The weak phosphorylation by CK2alpha is markedly stimulated by the activator polylysine to levels comparable to those with the holoenzyme. In addition, pull down assays indicate a direct interaction between Dpn and CK2. This is the first demonstration that Dpn is a partner and target of CK2, and raises the possibility that its repressor functions might also be regulated by phosphorylation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Caseína Quinase II/química , Proteínas de Drosophila/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Sequência Conservada , Proteínas de Ligação a DNA , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes de Fusão/química , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA