Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(12): 4546-4562, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31697482

RESUMO

Macromolecular architecture plays an important role in the self-assembly process of block copolymer amphiphiles. Herein, two series of stimuli-responsive amphiphilic 3-miktoarm star hybrid terpolypeptides and their corresponding linear analogues were synthesized exhibiting the same overall composition and molecular weight but different macromolecular architecture. The macromolecular architecture was found to be a key parameter in defining the morphology of the nanostructures formed in aqueous solutions as well as to alter the self-assembly behavior of the polymers independently of their composition. In addition, it was found that the assemblies prepared from the star-shaped polymers showed superior tolerance against enzymatic degradation due to the increased corona block density on the outer surface of the nanoparticles. Encapsulation of the hydrophobic anticancer drug Everolimus resulted in the formation of intriguing non-spherical and non-symmetric pH-responsive nanostructures, such as "stomatocytes" and "multi-compartmentalized suprapolymersomes", while the pH-triggered release of the drug was also investigated. Owing to the similarities of the developed "stomatocytes" with red blood cells, in combination with their pH-responsiveness and superior stability over enzymatic degradation, they are expected to present advanced drug delivery properties and have the ability to bypass several extra- and intracellular barriers to reach and effectively treat cancer cells.


Assuntos
Antineoplásicos , Everolimo , Hidrogéis , Nanopartículas/química , Peptídeos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Everolimo/química , Everolimo/farmacocinética , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacocinética , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacocinética
3.
Biomacromolecules ; 13(11): 3572-80, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22970916

RESUMO

We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or ß-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered ß-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by controlling molecular packing frustrations.


Assuntos
Peptídeos/química , Ácido Poliglutâmico/análogos & derivados , Polilisina/química , Polímeros/química , Cristais Líquidos/química , Ácido Poliglutâmico/química , Estrutura Secundária de Proteína , Tensoativos/química , Água/química
4.
Biomacromolecules ; 9(7): 2072-80, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18547108

RESUMO

By combining two living polymerizations, anionic and ring opening (ROP), the following novel multiblock multicomponent linear and miktoarm star (micro-star) polymer/polypeptide hybrids (macromolecular chimeras) were synthesized: Linear, PBLL-b-PBLG-b-PS-b-PBLG-b-PBLL; 3micro-stars, (PS)2(PBLG or PBLL), (PS)(PI)(PBLG or PBLL); 4micro-stars, (PS)2[P(alpha-MeS)](PBLG or PBLL), (PS)2(PBLG or PBLL)2 [PS, polystyrene; PI, polyisoprene; P(alpha-MeS), poly(alpha-methylstyrene); PBLG, poly(gamma-benzyl-L-glutamate); and PBLL, poly(-tert-butyloxycarbonyl-L-lysine)]. The procedure involves (a) the synthesis of end- or in-chain amino-functionalized polymers, by anionic polymerization high vacuum techniques and appropriate linking chemistry and (b) the use of the amino groups for the ROP of alpha-amino acid carboxyanhydrides (NCAs). Molecular characterization revealed the high molecular weight and compositional homogeneity of the macromolecular chimeras prepared. The success of the synthesis was based mainly on the high vacuum techniques used for the ROP of NCAs, ensuring the avoidance of unwanted polymerization mechanisms and termination reactions.


Assuntos
Materiais Biocompatíveis/síntese química , Peptídeos/química , Polímeros/química , Substâncias Macromoleculares , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA