Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 161(4): 858-67, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957689

RESUMO

The mitochondrion maintains and regulates its proteome with chaperones primarily inherited from its bacterial endosymbiont ancestor. Among these chaperones is the AAA+ unfoldase ClpX, an important regulator of prokaryotic physiology with poorly defined function in the eukaryotic mitochondrion. We observed phenotypic similarity in S. cerevisiae genetic interaction data between mitochondrial ClpX (mtClpX) and genes contributing to heme biosynthesis, an essential mitochondrial function. Metabolomic analysis revealed that 5-aminolevulinic acid (ALA), the first heme precursor, is 5-fold reduced in yeast lacking mtClpX activity and that total heme is reduced by half. mtClpX directly stimulates ALA synthase in vitro by catalyzing incorporation of its cofactor, pyridoxal phosphate. This activity is conserved in mammalian homologs; additionally, mtClpX depletion impairs vertebrate erythropoiesis, which requires massive upregulation of heme biosynthesis to supply hemoglobin. mtClpX, therefore, is a widely conserved stimulator of an essential biosynthetic pathway and uses a previously unrecognized mechanism for AAA+ unfoldases.


Assuntos
Endopeptidase Clp/metabolismo , Eritropoese , Eucariotos/metabolismo , Heme/biossíntese , 5-Aminolevulinato Sintetase/metabolismo , Sequência de Aminoácidos , Ácido Aminolevulínico/metabolismo , Animais , Evolução Biológica , Endopeptidase Clp/química , Endopeptidase Clp/genética , Eucariotos/genética , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Peixe-Zebra/metabolismo
2.
Mol Microbiol ; 115(6): 1094-1109, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33231899

RESUMO

Caseinolytic proteases (Clp) are central to bacterial proteolysis and control cellular physiology and stress responses. They are composed of a double-ring compartmentalized peptidase (ClpP) and a AAA+ unfoldase (ClpX or ClpA/ClpC). Unlike many bacteria, the opportunistic pathogen Pseudomonas aeruginosa contains two ClpP homologs: ClpP1 and ClpP2. The specific functions of these homologs, however, are largely elusive. Here, we report that the active form of PaClpP2 is a part of a heteromeric PaClpP17 P27 tetradecamer that is required for proper biofilm development. PaClpP114 and PaClpP17 P27 complexes exhibit distinct peptide cleavage specificities and interact differentially with P. aeruginosa ClpX and ClpA. Crystal structures reveal that PaClpP2 has non-canonical features in its N- and C-terminal regions that explain its poor interaction with unfoldases. However, experiments in vivo indicate that the PaClpP2 peptidase active site uniquely contributes to biofilm development. These data strongly suggest that the specificity of different classes of ClpP peptidase subunits contributes to the biological outcome of proteolysis. This specialized role of PaClpP2 highlights it as an attractive target for developing antimicrobial agents that interfere specifically with late-stage P. aeruginosa development.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Proteólise , Pseudomonas aeruginosa/metabolismo , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Cristalografia por Raios X , Conformação Proteica , Isoformas de Proteínas/genética , Serina Endopeptidases/genética , Especificidade por Substrato
3.
Nat Rev Mol Cell Biol ; 10(12): 854-65, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19935668

RESUMO

Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.


Assuntos
Citoplasma/metabolismo , Dineínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Complexo Dinactina , Dineínas/química , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(38): E8045-E8052, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874591

RESUMO

Loss-of-function mutations in genes for heme biosynthetic enzymes can give rise to congenital porphyrias, eight forms of which have been described. The genetic penetrance of the porphyrias is clinically variable, underscoring the role of additional causative, contributing, and modifier genes. We previously discovered that the mitochondrial AAA+ unfoldase ClpX promotes heme biosynthesis by activation of δ-aminolevulinate synthase (ALAS), which catalyzes the first step of heme synthesis. CLPX has also been reported to mediate heme-induced turnover of ALAS. Here we report a dominant mutation in the ATPase active site of human CLPX, p.Gly298Asp, that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX). Amassing of PPIX in erythroid cells promotes erythropoietic protoporphyria (EPP) in the affected family. The mutation in CLPX inactivates its ATPase activity, resulting in coassembly of mutant and WT protomers to form an enzyme with reduced activity. The presence of low-activity CLPX increases the posttranslational stability of ALAS, causing increased ALAS protein and ALA levels, leading to abnormal accumulation of PPIX. Our results thus identify an additional molecular mechanism underlying the development of EPP and further our understanding of the multiple mechanisms by which CLPX controls heme metabolism.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Endopeptidase Clp , Mutação de Sentido Incorreto , Porfiria Eritropoética , Protoporfirinas/biossíntese , 5-Aminolevulinato Sintetase/genética , Adolescente , Substituição de Aminoácidos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Estabilidade Enzimática/genética , Feminino , Humanos , Masculino , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Protoporfirinas/genética
5.
Proc Natl Acad Sci U S A ; 106(14): 5669-74, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19293377

RESUMO

Dynactin, a large multisubunit complex, is required for intracellular transport by dynein; however, its cellular functions and mechanism of action are not clear. Prior studies suggested that dynactin increases dynein processivity by tethering the motor to the microtubule through its own microtubule binding domains. However, this hypothesis could not be tested without a recombinant source of dynactin. Here, we have produced recombinant dynactin and dynein in Saccharomyces cerevisiae, and examined the effect of dynactin on dynein in single-molecule motility assays. We show that dynactin increases the run length of single dynein motors, but does not alter the directionality of dynein movement. Enhancement of dynein processivity by dynactin does not require the microtubule (MT) binding domains of Nip100 (the yeast p150(Glued) homolog). Dynactin lacking these MT binding domains also supports the proper localization and function of dynein during nuclear segregation in vivo. Instead, a segment of the coiled-coil of Nip100 is required for these activities. Our results directly demonstrate that dynactin increases the processivity of dynein through a mechanism independent of microtubule tethering.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Complexo Dinactina , Microtúbulos/metabolismo , Proteínas Motores Moleculares , Movimento (Física) , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
6.
Elife ; 92020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32091391

RESUMO

Mitochondria control the activity, quality, and lifetime of their proteins with an autonomous system of chaperones, but the signals that direct substrate-chaperone interactions and outcomes are poorly understood. We previously discovered that the mitochondrial AAA+ protein unfoldase ClpX (mtClpX) activates the initiating enzyme for heme biosynthesis, 5-aminolevulinic acid synthase (ALAS), by promoting cofactor incorporation. Here, we ask how mtClpX accomplishes this activation. Using S. cerevisiae proteins, we identified sequence and structural features within ALAS that position mtClpX and provide it with a grip for acting on ALAS. Observation of ALAS undergoing remodeling by mtClpX revealed that unfolding is limited to a region extending from the mtClpX-binding site to the active site. Unfolding along this path is required for mtClpX to gate cofactor binding to ALAS. This targeted unfolding contrasts with the global unfolding canonically executed by ClpX homologs and provides insight into how substrate-chaperone interactions direct the outcome of remodeling.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Mitocôndrias/metabolismo , Desdobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ativação Enzimática , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química
7.
J Cell Biol ; 158(7): 1263-75, 2002 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-12356870

RESUMO

Tcell antigen receptor (TCR) ligation initiates tyrosine kinase activation, signaling complex assembly, and immune synapse formation. Here, we studied the kinetics and mechanics of signaling complex formation in live Jurkat leukemic T cells using signaling proteins fluorescently tagged with variants of enhanced GFP (EGFP). Within seconds of contacting coverslips coated with stimulatory antibodies, T cells developed small, dynamically regulated clusters which were enriched in the TCR, phosphotyrosine, ZAP-70, LAT, Grb2, Gads, and SLP-76, excluded the lipid raft marker enhanced yellow fluorescent protein-GPI, and were competent to induce calcium elevations. LAT, Grb2, and Gads were transiently associated with the TCR. Although ZAP-70-containing clusters persisted for more than 20 min, photobleaching studies revealed that ZAP-70 continuously dissociated from and returned to these complexes. Strikingly, SLP-76 translocated to a perinuclear structure after clustering with the TCR. Our results emphasize the dynamically changing composition of signaling complexes and indicate that these complexes can form within seconds of TCR engagement, in the absence of either lipid raft aggregation or the formation of a central TCR-rich cluster.


Assuntos
Actinas/metabolismo , Lipídeos de Membrana/fisiologia , Microdomínios da Membrana , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Actinas/química , Proteínas Adaptadoras de Transdução de Sinal , Complexo CD3/imunologia , Complexo CD3/metabolismo , Cálcio/metabolismo , Colesterol/metabolismo , Proteínas de Fluorescência Verde , Humanos , Células Jurkat , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/fisiologia , Microscopia Confocal , Ácido Palmítico/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70
8.
Structure ; 26(4): 580-589.e4, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29551290

RESUMO

5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders.


Assuntos
5-Aminolevulinato Sintetase/química , Ácido Aminolevulínico/química , Heme/química , Mitocôndrias/enzimologia , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Ácido Aminolevulínico/metabolismo , Domínio Catalítico , Clonagem Molecular , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heme/biossíntese , Cinética , Mitocôndrias/química , Mitocôndrias/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
10.
PLoS One ; 9(7): e103141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072814

RESUMO

The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochondrial targeting sequence (MTS) or the C-terminal RNA binding domain of NOA1 impaired mitochondrial import. Absence of the MTS resulted in accumulation of NOA1 in the nucleus and increased caspase-dependent apoptosis. We also found that export of NOA1 from the nucleus requires a leptomycin-B sensitive, Crm1-dependent nuclear export signal (NES). Finally, we show that NOA1 is a new substrate of the mitochondrial matrix protease complex ClpXP. Our results uncovered an unexpected, mandatory detour of NOA1 through the nucleolus before uptake into mitochondria. We propose that nucleo-mitochondrial translocation of proteins is more widespread than previously anticipated providing additional means to control protein bioavailability as well as cellular communication between both compartments.


Assuntos
Núcleo Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Animais , Nucléolo Celular/metabolismo , DNA/metabolismo , Endopeptidase Clp/metabolismo , Ácidos Graxos Insaturados/farmacologia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/metabolismo , Humanos , Camundongos , Sinais de Localização Nuclear/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA/metabolismo , Especificidade por Substrato
11.
Biochemistry ; 41(11): 3667-75, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11888283

RESUMO

The Hepatitis Delta Virus (HDV) ribozyme was the first RNA enzyme proposed to use a proton-transfer mechanism for catalysis. Previous biochemical evidence suggested that the genomic HDV ribozyme promotes cis-cleavage using cytosine 75 whose pK(a) is perturbed within the active site. Here we present further biochemical evidence for the involvement of C75 in proton transfer, as well as evidence to support a plausible mechanism for C75 pK(a) perturbation. Nucleotide analogue interference mapping (NAIM) experiments with C analogues having altered N3 pK(a)s demonstrate the importance of C75 ionization in the HDV cis-cleavage reaction. pH-dependent interference rescue with C analogues having enhanced N3 acidity indicates that C75 is the only cytidine residue that must be protonated for ribozyme activity. Furthermore, interference analysis with pseudoisocytidine, a charge-neutral mimic of a C with a protonated N3, shows a pattern consistent with proton transfer, possibly from the C75 N3 to the 5'-oxyanion leaving group during the cis-cleavage reaction. Strong pH-independent inhibition of ribozyme function also occurs at C75 with a C analogue that lacks the N4 amino group, implicating the exocyclic amine in critical interactions in the active site. Interactions with the amino group may play an important role in perturbing the C75 N3 pK(a). Protonation of C41 has been proposed to be important for ribozyme activity; however, no interference at C41 was observed in this analogue series, which argues against a functional role for C41 protonation. These data support a model wherein C75 of the genomic HDV ribozyme acts as a general acid during its cis-cleavage reaction, and provide a glimpse into how RNAs, in a manner similar to protein enzymes, might employ local environmental electronic modulation to catalyze reactions.


Assuntos
Vírus Delta da Hepatite/enzimologia , Vírus Delta da Hepatite/genética , RNA Catalítico/metabolismo , Sequência de Bases , Sítios de Ligação , Catálise , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Hidrólise , Cinética , Conformação de Ácido Nucleico , RNA Catalítico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA