Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(10): 3081-3093, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598486

RESUMO

This study describes the response of Arthrospira platensis to a variety of temperature conditions as reflected in variations of photosynthetic parameters, pigmentation, and biomass productivity in indoor photobioreactor (PBR) cultivations. These experiments are designed to better understand the impact of temperature, seasonal variations, and acclimation effects on outdoor biomass production. The irradiance level and temperature range (20-39°C) are chosen to enable modeling of semi-continuous operation of large-scale outdoor PBR deployments. Overall, the cultivations are quite stable with some pigment-related instabilities after prolonged high-temperature exposure. Changes in productivity with temperature, as reflected in measured photosynthetic parameters, are immediate and mainly attributable to the temperature dependence of the photosaturation parameter, a secondary factor being variation in pigment content on a longer time scale corresponding to turnover of the culture population. Though pigment changes are not accompanied by significant changes in productivity, prolonged exposure at 35°C and above yields a clear degradation in performance. Productivities in a semi-continuous operation are quantitatively reproduced with a productivity model incorporating photosynthetic parameters measured herein. This study confirms the importance of temperature for biomass and pigment production in Arthrospira cultivations and provides a basis for risk assessments related to temperature mitigation for large-scale outdoor cultivations.


Assuntos
Clorofila/metabolismo , Fotobiorreatores/normas , Fotossíntese , Ficocianina/metabolismo , Spirulina/metabolismo , Temperatura , Biomassa
2.
Recent Pat Biotechnol ; 10(1): 30-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27585483

RESUMO

BACKGROUND: In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. OBJECTIVE: Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. METHODS: Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. RESULTS: There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. CONCLUSION: Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.


Assuntos
Biocombustíveis/microbiologia , Microalgas/crescimento & desenvolvimento , Biomassa , Mudança Climática , Aquecimento Global , Invenções , Patentes como Assunto
3.
Bioresour Technol ; 191: 399-406, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25921786

RESUMO

In the present study, carbon-dioxide capture from in situ generated flue gas was carried out using Chlorella sp. in bubble column photobioreactors to develop a cost effective process for concomitant carbon sequestration and biomass production. Firstly, a comparative analysis of CO2 sequestration with varying concentrations of CO2 in air-CO2 and air-flue gas mixtures was performed. Chlorella sp. was found to be tolerant to 5% CO2 concentration. Subsequently, inhibitory effect of pure flue gas was minimized using various strategies like use of high initial cell density and photobioreactors in series. The final biofixation efficiency was improved by 54% using the adopted strategies. Further, sequestered microalgal biomass was analyzed for various biochemical constituents for their use in food, feed or biofuel applications.


Assuntos
Reatores Biológicos , Dióxido de Carbono/metabolismo , Gases , Microalgas/metabolismo , Processos Fotoquímicos , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA