Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(3): 766-793, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975820

RESUMO

Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Procedimentos Neurocirúrgicos , Neurônios
2.
J Neurosci ; 42(15): 3096-3121, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35256527

RESUMO

Traumatic spinal cord injury (SCI) is a leading cause of permanent neurologic disabilities in young adults. Functional impairments after SCI are substantially attributed to the progressive neurodegeneration. However, regeneration of spinal-specific neurons and circuit re-assembly remain challenging in the dysregulated milieu of SCI because of impaired neurogenesis and neuronal maturation by neural precursor cells (NPCs) spontaneously or in cell-based strategies. The extrinsic mechanisms that regulate neuronal differentiation and synaptogenesis in SCI are poorly understood. Here, we perform extensive in vitro and in vivo studies to unravel that SCI-induced upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) impedes neurogenesis of NPCs through co-activation of two receptor protein tyrosine phosphatases, LAR and PTPσ. In adult female rats with SCI, systemic co-inhibition of LAR and PTPσ promotes regeneration of motoneurons and spinal interneurons by engrafted human directly reprogramed caudalized NPCs (drNPC-O2) and fosters their morphologic maturity and synaptic connectivity within the host neural network that culminate in improved recovery of locomotion and sensorimotor integration. Our transcriptomic analysis of engrafted human NPCs in the injured spinal cord confirmed that inhibition of CSPG receptors activates a comprehensive program of gene expression in NPCs that can support neuronal differentiation, maturation, morphologic complexity, signal transmission, synaptic plasticity, and behavioral improvement after SCI. We uncovered that CSPG/LAR/PTPσ axis suppresses neuronal differentiation in part by blocking Wnt/ß-Catenin pathway. Taken together, we provide the first evidence that CSPGs/LAR/PTPσ axis restricts neurogenesis and synaptic integration of new neurons in NPC cellular therapies for SCI. We propose targeting LAR and PTPσ receptors offers a promising clinically-feasible adjunct treatment to optimize the efficacy and neurologic benefits of ongoing NPC-based clinical trials for SCI.SIGNIFICANCE STATEMENT Transplantation of neural precursor cells (NPCs) is a promising approach for replacing damaged neurons after spinal cord injury (SCI). However, survival, neuronal differentiation, and synaptic connectivity of transplanted NPCs within remain challenging in SCI. Here, we unravel that activation of chondroitin sulfate proteoglycan (CSPG)/LAR/PTPσ axis after SCI impedes the capacity of transplanted human NPCs for replacing functionally integrated neurons. Co-blockade of LAR and PTPσ is sufficient to promote re-generation of motoneurons and spinal V1 and V3 interneurons by engrafted human caudalized directly reprogramed NPCs (drNPC-O2) and facilitate their synaptic integration within the injured spinal cord. CSPG/LAR/PTPσ axis appears to suppress neuronal differentiation of NPCs by inhibiting Wnt/ß-Catenin pathway. These findings identify targeting CSPG/LAR/PTPσ axis as a promising strategy for optimizing neuronal replacement, synaptic re-connectivity, and neurologic recovery in NPC-based strategies.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Feminino , Humanos , Neurônios Motores/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Ratos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , beta Catenina
3.
Am J Respir Cell Mol Biol ; 69(6): 649-665, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552547

RESUMO

Asthma pathobiology includes oxidative stress that modifies cell membranes and extracellular phospholipids. Oxidized phosphatidylcholines (OxPCs) in lung lavage from allergen-challenged human participants correlate with airway hyperresponsiveness and induce bronchial narrowing in murine thin-cut lung slices. OxPCs activate many signaling pathways, but mechanisms for these responses are unclear. We hypothesize that OxPCs stimulate intracellular free Ca2+ flux to trigger airway smooth muscle contraction. Intracellular Ca2+ flux was assessed in Fura-2-loaded, cultured human airway smooth muscle cells. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) induced an approximately threefold increase in 20 kD myosin light chain phosphorylation. This correlated with a rapid peak in intracellular cytoplasmic Ca2+ concentration ([Ca2+]i) (143 nM) and a sustained plateau that included slow oscillations in [Ca2+]i. Sustained [Ca2+]i elevation was ablated in Ca2+-free buffer and by TRPA1 inhibition. Conversely, OxPAPC-induced peak [Ca2+]i was unaffected in Ca2+-free buffer, by TRPA1 inhibition, or by inositol 1,4,5-triphosphate receptor inhibition. Peak [Ca2+]i was ablated by pharmacologic inhibition of ryanodine receptor (RyR) Ca2+ release from the sarcoplasmic reticulum. Inhibiting the upstream RyR activator cyclic adenosine diphosphate ribose with 8-bromo-cyclic adenosine diphosphate ribose was sufficient to abolish OxPAPC-induced cytoplasmic Ca2+ flux. OxPAPC induced ∼15% bronchial narrowing in thin-cut lung slices that could be prevented by pharmacologic inhibition of either TRPA1 or RyR, which similarly inhibited OxPC-induced myosin light chain phosphorylation in cultured human airway smooth muscle cells. In summary, OxPC mediates airway narrowing by triggering TRPA1 and RyR-mediated mobilization of intracellular and extracellular Ca2+ in airway smooth muscle. These data suggest that OxPC in the airways of allergen-challenged subjects and subjects with asthma may contribute to airway hyperresponsiveness.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , ADP-Ribose Cíclica/metabolismo , Asma/metabolismo , Contração Muscular/fisiologia , Hipersensibilidade Respiratória/metabolismo , Fosfatidilcolinas/metabolismo , Alérgenos/metabolismo , Cálcio/metabolismo , Canal de Cátion TRPA1/metabolismo
4.
Mult Scler ; 28(1): 29-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870797

RESUMO

BACKGROUND: Immune-mediated demyelination and consequent degeneration of oligodendrocytes and axons are hallmark features of multiple sclerosis (MS). Remyelination declines in progressive MS, causing permanent axonal loss and irreversible disabilities. Strategies aimed at enhancing remyelination are critical to attenuate disease progression. OBJECTIVE: We systematically reviewed recent advances in neuroprotective and regenerative therapies for MS, covering preclinical and clinical studies. METHODS: We searched three biomedical databases using defined keywords. Two authors independently reviewed articles for inclusion based on pre-specified criteria. The data were extracted from each study and assessed for risk of bias. RESULTS: Our search identified 7351 studies from 2014 to 2020, of which 221 met the defined criteria. These studies reported 262 interventions, wherein 92% were evaluated in animal models. These interventions comprised protein, RNA, lipid and cellular biologics, small molecules, inorganic compounds, and dietary and physiological interventions. Small molecules were the most highly represented strategy, followed by antibody therapies and stem cell transplantation. CONCLUSION: While significant strides have been made to develop regenerative treatments for MS, the current evidence illustrates a skewed representation of the types of strategies that advance to clinical trials. Further examination is thus required to address current barriers to implementing experimental treatments in clinical settings.


Assuntos
Esclerose Múltipla , Remielinização , Animais , Axônios , Esclerose Múltipla/terapia , Bainha de Mielina , Regeneração Nervosa , Oligodendroglia
5.
Brain ; 144(1): 162-185, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33313801

RESUMO

Multiple sclerosis is characterized by immune mediated neurodegeneration that results in progressive, life-long neurological and cognitive impairments. Yet, the endogenous mechanisms underlying multiple sclerosis pathophysiology are not fully understood. Here, we provide compelling evidence that associates dysregulation of neuregulin-1 beta 1 (Nrg-1ß1) with multiple sclerosis pathogenesis and progression. In the experimental autoimmune encephalomyelitis model of multiple sclerosis, we demonstrate that Nrg-1ß1 levels are abated within spinal cord lesions and peripherally in the plasma and spleen during presymptomatic, onset and progressive course of the disease. We demonstrate that plasma levels of Nrg-1ß1 are also significantly reduced in individuals with early multiple sclerosis and is positively associated with progression to relapsing-remitting multiple sclerosis. The functional impact of Nrg-1ß1 downregulation preceded disease onset and progression, and its systemic restoration was sufficient to delay experimental autoimmune encephalomyelitis symptoms and alleviate disease burden. Intriguingly, Nrg-1ß1 therapy exhibited a desirable and extended therapeutic time window of efficacy when administered prophylactically, symptomatically, acutely or chronically. Using in vivo and in vitro assessments, we identified that Nrg-1ß1 treatment mediates its beneficial effects in EAE by providing a more balanced immune response. Mechanistically, Nrg-1ß1 moderated monocyte infiltration at the blood-CNS interface by attenuating chondroitin sulphate proteoglycans and MMP9. Moreover, Nrg-1ß1 fostered a regulatory and reparative phenotype in macrophages, T helper type 1 (Th1) cells and microglia in the spinal cord lesions of EAE mice. Taken together, our new findings in multiple sclerosis and experimental autoimmune encephalomyelitis have uncovered a novel regulatory role for Nrg-1ß1 early in the disease course and suggest its potential as a specific therapeutic target to ameliorate disease progression and severity.


Assuntos
Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neuregulina-1/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Animais , Progressão da Doença , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Mielite/imunologia , Mielite/metabolismo , Mielite/patologia , Medula Espinal/imunologia
6.
J Neurosci Res ; 99(10): 2427-2462, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34259342

RESUMO

Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Homeostase/fisiologia , Neurogênese/fisiologia , Animais , Transdiferenciação Celular/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Gliose/metabolismo , Gliose/patologia , Humanos
7.
Nature ; 518(7539): 404-8, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25470046

RESUMO

Contusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase σ (PTPσ), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs. Here we find in rats that PTPσ has a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPσ wedge domain that binds to PTPσ and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPσ in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regeneração Nervosa , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Traumatismos da Medula Espinal/metabolismo , Sequência de Aminoácidos , Animais , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Regeneração Nervosa/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Traumatismos da Medula Espinal/patologia
8.
Glia ; 67(1): 125-145, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30394599

RESUMO

Following spinal cord injury (SCI), the population of mature oligodendrocytes undergoes substantial cell death; promoting their preservation and replacement is a viable strategy for preserving axonal integrity and white matter repair in the injured spinal cord. Dramatic upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) is shown to pose an obstacle to endogenous repair processes, and targeting CSPGs improves functional recovery after SCI. However, the cellular and molecular mechanisms underlying the inhibitory effects of CSPGs remain largely undefined. Modulation of CSPGs specific signaling receptors, leukocyte common antigen-related (LAR), and protein tyrosine phosphatase-sigma (PTPσ) allows us to uncover the role and mechanisms of CSPGs in regulating oligodendrocytes in SCI. Here, utilizing specific functionally blocking peptides in a clinically relevant model of contusive/compressive SCI in the rat, we demonstrate that inhibition of PTPσ and LAR receptors promotes oligodendrogenesis by endogenous precursor cells, attenuates caspase 3-mediated cell death in mature oligodendrocytes, and preserves myelin. In parallel in vitro systems, we have unraveled that CSPGs directly induce apoptosis in populations of neural precursor cells and oligodendrocyte progenitor cells and limit their ability for oligodendrocyte differentiation, maturation, and myelination. These negative effects of CSPGs are mediated through the activation of both LAR and PTPσ receptors and the downstream Rho/ROCK pathway. Thus, we have identified a novel inhibitory role for PTPσ and LAR in regulating oligodendrocyte differentiation and apoptosis in the injured adult spinal cord and a new feasible therapeutic strategy for optimizing endogenous cell replacement following SCI.


Assuntos
Oligodendroglia/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Traumatismos da Medula Espinal/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/biossíntese , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
9.
Cell Mol Neurobiol ; 39(1): 73-85, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30421242

RESUMO

The involvement of glutamate in neuronal cell death in neurodegenerative diseases and neurotrauma is mediated through excitotoxicity or oxytosis. The latter process induces oxidative stress via glutamate-mediated inhibition of cysteine transporter xCT, leading to depletion of the cellular glutathione pool. Mitochondrial damage, loss of mitochondrial membrane potential (MMP), and depletion of energy metabolites have been shown in this process. The Voltage-Dependent Anion Channel-1 (VDAC1) is one of the main components of the mitochondrial outer membrane and plays a gatekeeping role in mitochondria-cytoplasm transport of metabolites. In this study, we explored the possible participation of VDAC-1 in the pathophysiology of oxytosis. Administration of glutamate in HT22 cells that lack the glutamate ionotropic receptors induced an upregulation and oligomerization of VDAC1. This was associated with an increase in ROS and loss of cell survival. Glutamate-mediated oxytosis in this model also decreased MMP and promoted ATP depletion, resulting in translocation of cytochrome c (cyt C) and apoptosis inducing factor (AIF) from mitochondria into the cytosol. This was also accompanied by cleavage of AIF to form truncated AIF. Inhibition of VDAC1 oligomerization using 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), significantly improved the cell survival, decreased the ROS levels, improved mitochondrial functions, and decreased the mitochondrial damage. Notably, DIDS also inhibited the mitochondrial fragmentation caused by glutamate, indicating the active role of VDAC1 oligomerization in the process of mitochondrial fragmentation in oxytosis. These results suggest a critical role for VDAC1 in mitochondrial fragmentation and its potential therapeutic value against glutamate-mediated oxidative neurotoxicity.


Assuntos
Ácido Glutâmico/toxicidade , Hipocampo/patologia , Mitocôndrias/metabolismo , Neurotoxinas/toxicidade , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Piperazinas/toxicidade , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Glia ; 66(3): 538-561, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29148104

RESUMO

Oligodendroglial cell death and demyelination are hallmarks of neurotrauma and multiple sclerosis that cause axonal damage and functional impairments. Remyelination remains a challenge as the ability of endogenous precursor cells for oligodendrocyte replacement is hindered in the unfavorable milieu of demyelinating conditions. Here, in a rat model of lysolecithin lysophosphatidyl-choline (LPC)-induced focal demyelination, we report that Neuregulin-1 (Nrg-1), an important factor for oligodendrocytes and myelination, is dysregulated in demyelinating lesions and its bio-availability can promote oligodendrogenesis and remyelination. We delivered recombinant human Nrg-1ß1 (rhNrg-1ß1) intraspinally in the vicinity of LPC demyelinating lesion in a sustained manner using poly lactic-co-glycolic acid microcarriers. Availability of Nrg-1 promoted generation and maturation of new oligodendrocytes, and accelerated endogenous remyelination by both oligodendrocyte and Schwann cell populations in demyelinating foci. Importantly, Nrg-1 enhanced myelin thickness in newly remyelinated spinal cord axons. Our complementary in vitro studies also provided direct evidence that Nrg-1 significantly promotes maturation of new oligodendrocytes and facilitates their transition to a myelinating phenotype. Nrg-1 therapy remarkably attenuated the upregulated expression chondroitin sulfate proteoglycans (CSPGs) specific glycosaminoglycans in the extracellular matrix of demyelinating foci and promoted interleukin-10 (IL-10) production by immune cells. CSPGs and IL-10 are known to negatively and positively regulate remyelination, respectively. We found that Nrg-1 effects are mediated through ErbB2 and ErbB4 receptor activation. Our work provides novel evidence that dysregulated levels of Nrg-1 in demyelinating lesions of the spinal cord pose a challenge to endogenous remyelination, and appear to be an underlying cause of myelin thinning in newly remyelinated axons.


Assuntos
Doenças Desmielinizantes/terapia , Imunomodulação , Neuregulina-1/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Remielinização/fisiologia , Medula Espinal/imunologia , Animais , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Feminino , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Humanos , Ácido Láctico , Masculino , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/patologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Medula Espinal/patologia , Doenças da Medula Espinal/imunologia , Doenças da Medula Espinal/patologia , Doenças da Medula Espinal/terapia
11.
J Neuroinflammation ; 15(1): 53, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467001

RESUMO

BACKGROUND: Spinal cord injury (SCI) triggers a robust neuroinflammatory response that governs secondary injury mechanisms with both degenerative and pro-regenerative effects. Identifying new immunomodulatory therapies to promote the supportive aspect of immune response is critically needed for the treatment of SCI. We previously demonstrated that SCI results in acute and permanent depletion of the neuronally derived Neuregulin-1 (Nrg-1) in the spinal cord. Increasing the dysregulated level of Nrg-1 through acute intrathecal Nrg-1 treatment enhanced endogenous cell replacement and promoted white matter preservation and functional recovery in rat SCI. Moreover, we identified a neuroprotective role for Nrg-1 in moderating the activity of resident astrocytes and microglia following injury. To date, the impact of Nrg-1 on immune response in SCI has not yet been investigated. In this study, we elucidated the effect of systemic Nrg-1 therapy on the recruitment and function of macrophages, T cells, and B cells, three major leukocyte populations involved in neuroinflammatory processes following SCI. METHODS: We utilized a clinically relevant model of moderately severe compressive SCI in female Sprague-Dawley rats. Nrg-1 (2 µg/day) or saline was delivered subcutaneously through osmotic mini-pumps starting 30 min after SCI. We conducted flow cytometry, quantitative real-time PCR, and immunohistochemistry at acute, subacute, and chronic stages of SCI to investigate the effects of Nrg-1 treatment on systemic and spinal cord immune response as well as cytokine, chemokine, and antibody production. RESULTS: We provide novel evidence that Nrg-1 promotes a pro-regenerative immune response after SCI. Bioavailability of Nrg-1 stimulated a regulatory phenotype in T and B cells and augmented the population of M2 macrophages in the spinal cord and blood during the acute and chronic stages of SCI. Importantly, Nrg-1 fostered a more balanced microenvironment in the injured spinal cord by attenuating antibody deposition and expression of pro-inflammatory cytokines and chemokines while upregulating pro-regenerative mediators. CONCLUSION: We provide the first evidence of a significant regulatory role for Nrg-1 in neuroinflammation after SCI. Importantly, the present study establishes the promise of systemic Nrg-1 treatment as a candidate immunotherapy for traumatic SCI and other CNS neuroinflammatory conditions.


Assuntos
Imunidade Celular/efeitos dos fármacos , Neuregulina-1/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/imunologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Feminino , Imunidade Celular/fisiologia , Infusões Subcutâneas , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia
12.
J Neuroinflammation ; 15(1): 90, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558941

RESUMO

BACKGROUND: Traumatic spinal cord injury (SCI) results in upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia that impedes repair and regeneration in the spinal cord. Degradation of CSPGs is known to be beneficial in promoting endogenous repair mechanisms including axonal sprouting/regeneration, oligodendrocyte replacement, and remyelination, and is associated with improvements in functional outcomes after SCI. Recent evidence suggests that CSPGs may regulate secondary injury mechanisms by modulating neuroinflammation after SCI. To date, the role of CSPGs in SCI neuroinflammation remains largely unexplored. The recent discovery of CSPG-specific receptors, leukocyte common antigen-related (LAR) and protein tyrosine phosphatase-sigma (PTPσ), allows unraveling the cellular and molecular mechanisms of CSPGs in SCI. In the present study, we have employed parallel in vivo and in vitro approaches to dissect the role of CSPGs and their receptors LAR and PTPσ in modulating the inflammatory processes in the acute and subacute phases of SCI. METHODS: In a clinically relevant model of compressive SCI in female Sprague Dawley rats, we targeted LAR and PTPσ by two intracellular functionally blocking peptides, termed ILP and ISP, respectively. We delivered ILP and ISP treatment intrathecally to the injured spinal cord in a sustainable manner by osmotic mini-pumps for various time-points post-SCI. We employed flow cytometry, Western blotting, and immunohistochemistry in rat SCI, as well as complementary in vitro studies in primary microglia cultures to address our questions. RESULTS: We provide novel evidence that signifies a key immunomodulatory role for LAR and PTPσ receptors in SCI. We show that blocking LAR and PTPσ reduces the population of classically activated M1 microglia/macrophages, while promoting alternatively activated M2 microglia/macrophages and T regulatory cells. This shift was associated with a remarkable elevation in pro-regenerative immune mediators, interleukin-10 (IL-10), and Arginase-1. Our parallel in vitro studies in microglia identified that while CSPGs do not induce an M1 phenotype per se, they promote a pro-inflammatory phenotype. Interestingly, inhibiting LAR and PTPσ in M1 and M2 microglia positively modulates their inflammatory response in the presence of CSPGs, and harnesses their ability for phagocytosis and mobilization. Interestingly, our findings indicate that CSPGs regulate microglia, at least in part, through the activation of the Rho/ROCK pathway downstream of LAR and PTPσ. CONCLUSIONS: We have unveiled a novel role for LAR and PTPσ in regulating neuroinflammation in traumatic SCI. Our findings provide new insights into the mechanisms by which manipulation of CSPG signaling can promote recovery from SCI. More importantly, this work introduces the potential of ILP/ISP as a viable strategy for modulating the immune response following SCI and other neuroinflammatory conditions of the central nervous system.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Traumatismos da Medula Espinal/complicações , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Citocinas/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/fisiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Peroxidase/metabolismo , Fagocitose/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
13.
Glia ; 65(7): 1152-1175, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28456012

RESUMO

Spinal cord injury (SCI) results in glial activation and neuroinflammation, which play pivotal roles in the secondary injury mechanisms with both pro- and antiregeneration effects. Presently, little is known about the endogenous molecular mechanisms that regulate glial functions in the injured spinal cord. We previously reported that the expression of neuregulin-1 (Nrg-1) is acutely and chronically declined following traumatic SCI. Here, we investigated the potential ramifications of Nrg-1 dysregulation on glial and immune cell reactivity following SCI. Using complementary in vitro approaches and a clinically-relevant model of severe compressive SCI in rats, we demonstrate that immediate delivery of Nrg-1 (500 ng/day) after injury enhances a neuroprotective phenotype in inflammatory cells associated with increased interleukin-10 and arginase-1 expression. We also found a decrease in proinflammatory factors including IL-1ß, TNF-α, matrix metalloproteinases (MMP-2 and 9) and nitric oxide after injury. In addition, Nrg-1 modulates astrogliosis and scar formation by reducing inhibitory chondroitin sulfate proteoglycans after SCI. Mechanistically, Nrg-1 effects on activated glia are mediated through ErbB2 tyrosine phosphorylation in an ErbB2/3 heterodimer complex. Furthermore, Nrg-1 exerts its effects through downregulation of MyD88, a downstream adaptor of Toll-like receptors, and increased phosphorylation of Erk1/2 and STAT3. Nrg-1 treatment with the therapeutic dosage of 1.5 µg/day significantly improves tissue preservation and functional recovery following SCI. Our findings for the first time provide novel insights into the role and mechanisms of Nrg-1 in acute SCI and suggest a positive immunomodulatory role for Nrg-1 that can harness the beneficial properties of activated glia and inflammatory cells in recovery following SCI.


Assuntos
Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Neuregulina-1/uso terapêutico , Neuroglia/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/complicações , Animais , Animais Recém-Nascidos , Arginase/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/toxicidade , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Neuroglia/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Fatores de Tempo
14.
J Physiol ; 594(13): 3539-52, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26857216

RESUMO

Myelin is a proteolipid sheath enwrapping axons in the nervous system that facilitates signal transduction along the axons. In the central nervous system (CNS), oligodendrocytes are specialized glial cells responsible for myelin formation and maintenance. Following spinal cord injury (SCI), oligodendroglia cell death and myelin damage (demyelination) cause chronic axonal damage and irreparable loss of sensory and motor functions. Accumulating evidence shows that replacement of damaged oligodendrocytes and renewal of myelin (remyelination) are promising approaches to prevent axonal degeneration and restore function following SCI. Neural precursor cells (NPCs) and oligodendrocyte progenitor cells (OPCs) are two main resident cell populations in the spinal cord with innate capacities to foster endogenous oligodendrocyte replacement and remyelination. However, due to the hostile microenvironment of SCI, the regenerative capacity of these endogenous precursor cells is conspicuously restricted. Activated resident glia, along with infiltrating immune cells, are among the key modulators of secondary injury mechanisms that create a milieu impermissible to oligodendrocyte differentiation and remyelination. Recent studies have uncovered inhibitory roles for astrocyte-associated molecules such as matrix chondroitin sulfate proteoglycans (CSPGs), and a plethora of pro-inflammatory cytokines and neurotoxic factors produced by activated microglia/macrophages. The quality of axonal remyelination is additionally challenged by dysregulation of the supportive growth factors required for maturation of new oligodendrocytes and axo-oligodendrocyte signalling. Careful understanding of factors that modulate the activity of endogenous precursor cells in the injury microenvironment is a key step in developing efficient repair strategies for remyelination and functional recovery following SCI.


Assuntos
Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Diferenciação Celular , Oligodendroglia/citologia , Células-Tronco/fisiologia
15.
Stem Cells ; 33(8): 2550-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25703008

RESUMO

Multipotent adult neural precursor cells (NPCs) have tremendous intrinsic potential to repair the damaged spinal cord. However, evidence shows that the regenerative capabilities of endogenous and transplanted NPCs are limited in the microenvironment of spinal cord injury (SCI). We previously demonstrated that injury-induced upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) restricts the survival, migration, integration, and differentiation of NPCs following SCI. CSPGs are long-lasting components of the astroglial scar that are formed around the lesion. Our recent in vivo studies demonstrated that removing CSPGs from the SCI environment enhances the potential of transplanted and endogenous adult NPCs for spinal cord repair; however, the mechanisms by which CSPGs regulate NPCs remain unclear. In this study, using in vitro models recapitulating the extracellular matrix of SCI, we investigated the direct role of CSPGs in modulating the properties of adult spinal cord NPCs. We show that CSPGs significantly decrease NPCs growth, attachment, survival, proliferation, and oligodendrocytes differentiation. Moreover, using genetic models, we show that CSPGs regulate NPCs by signaling on receptor protein tyrosine phosphate sigma (RPTPσ) and leukocyte common antigen-related phosphatase (LAR). Intracellularly, CSPGs inhibitory effects are mediated through Rho/ROCK pathway and inhibition of Akt and Erk1/2 phosphorylation. Downregulation of RPTPσ and LAR and blockade of ROCK in NPCs attenuates the inhibitory effects of CSPGS. Our work provide novel evidence uncovering how upregulation of CSPGs challenges the response of NPCs in their post-SCI niche and identifies new therapeutic targets for enhancing NPC-based therapies for SCI repair.


Assuntos
Sulfatos de Condroitina/metabolismo , Células-Tronco Neurais/metabolismo , Proteoglicanas/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Sulfatos de Condroitina/genética , Camundongos , Camundongos Knockout , Proteoglicanas/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Quinases Associadas a rho/genética
16.
BMC Genomics ; 14: 583, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23984903

RESUMO

BACKGROUND: The aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord. RESULTS: Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase. CONCLUSIONS: This analysis showed that, surprisingly, the diverse series of molecular events that occur in the acute and subacute stages persist into the chronic stage of SCI. The strong agreement between our results and previous findings suggest that our analytical approach will be useful in revealing other biological processes and genes contributing to SCI pathology.


Assuntos
Compressão da Medula Espinal/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Animais , Apoptose/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Genoma , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Ratos , Ratos Wistar , Compressão da Medula Espinal/genética , Compressão da Medula Espinal/patologia
17.
Eur J Neurosci ; 38(5): 2693-715, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23758598

RESUMO

Spinal cord injury (SCI) results in degeneration of oligodendrocytes that leads to demyelination and axonal dysfunction. Replacement of oligodendrocytes is impaired after SCI, owing to the improper endogenous differentiation and maturation of myelinating oligodendrocytes. Here, we report that SCI-induced dysregulation of neuregulin-1 (Nrg-1)-ErbB signaling may underlie the poor replacement of oligodendrocytes. Nrg-1 and its receptors, ErbB-2, ErbB-3, and ErbB-4, play essential roles in several aspects of oligodendrocyte development and physiology. In rats with SCI, we demonstrate that the Nrg-1 level is dramatically reduced at 1 day after injury, with no restoration at later time-points. Our characterisation shows that Nrg-1 is mainly expressed by neurons, axons and oligodendrocytes in the adult spinal cord, and the robust and lasting decrease in its level following SCI reflects the permanent loss of these cells. Neural precursor cells (NPCs) residing in the spinal cord ependyma express ErbB receptors, suggesting that they are responsive to Nrg-1 availability. In vitro, exogenous Nrg-1 enhanced the proliferation and differentiation of spinal NPCs into oligodendrocytes while reducing astrocyte differentiation. In rats with SCI, recombinant human Nrg-1ß1 treatment resulted in a significant increase in the number of new oligodendrocytes and the preservation of existing ones after injury. Nrg-1ß1 administration also enhanced axonal preservation and attenuated astrogliosis, tumor necrosis factor-α release and tissue degeneration after SCI. The positive effects of Nrg-1ß1 treatment were reversed by inhibiting its receptors. Collectively, our data provide strong evidence to suggest an impact of Nrg-1-ErbB signaling on endogenous oligodendrocyte replacement and maintenance in the adult injured spinal cord, and its potential as a therapeutic target for SCI.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/citologia , Neuregulina-1/metabolismo , Oligodendroglia/citologia , Receptores Proteína Tirosina Quinases/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Receptores ErbB/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuregulina-1/farmacologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4 , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
18.
Adv Exp Med Biol ; 760: 53-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23281513

RESUMO

Spinal cord injury (SCI) has remained a challenging area for scientists and clinicians due to the adverse and complex nature of its pathobiology. To date, clinical therapies for debilitating SCI are largely ineffective. However, emerging research evidence suggests that repair of SCI can be promoted by stem cell-based therapies in regenerative medicine. Over the past decade, therapeutic potential of different types of stem cells for the treatment of SCI have been investigated in preclinical models. These studies have revealed multiple beneficial roles by which stem cells can improve the outcomes of SCI. This chapter will summarize the recent advances in the application of stem cells in regenerative medicine for the repair of SCI.


Assuntos
Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/fisiologia , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências , Animais , Humanos , Traumatismos da Medula Espinal/fisiopatologia , Células-Tronco/citologia , Células-Tronco/fisiologia
19.
Nat Commun ; 13(1): 2445, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508608

RESUMO

Remyelination failure in multiple sclerosis (MS) contributes to progression of disability. The deficient repair results from neuroinflammation and deposition of inhibitors including chondroitin sulfate proteoglycans (CSPGs). Which CSPG member is repair-inhibitory or alters local inflammation to exacerbate injury is unknown. Here, we correlate high versican-V1 expression in MS lesions with deficient premyelinating oligodendrocytes, and highlight its selective upregulation amongst CSPG members in experimental autoimmune encephalomyelitis (EAE) lesions modeling MS. In culture, purified versican-V1 inhibits oligodendrocyte precursor cells (OPCs) and promotes T helper 17 (Th17) polarization. Versican-V1-exposed Th17 cells are particularly toxic to OPCs. In NG2CreER:MAPTmGFP mice illuminating newly formed GFP+ oligodendrocytes/myelin, difluorosamine (peracetylated,4,4-difluoro-N-acetylglucosamine) treatment from peak EAE reduces lesional versican-V1 and Th17 frequency, while enhancing GFP+ profiles. We suggest that lesion-elevated versican-V1 directly impedes OPCs while it indirectly inhibits remyelination through elevating local Th17 cytotoxic neuroinflammation. We propose CSPG-lowering drugs as potential dual pronged repair and immunomodulatory therapeutics for MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/patologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Versicanas/metabolismo
20.
J Neurosci ; 30(5): 1657-76, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20130176

RESUMO

The transplantation of neural stem/progenitor cells (NPCs) is a promising therapeutic strategy for spinal cord injury (SCI). However, to date NPC transplantation has exhibited only limited success in the treatment of chronic SCI. Here, we show that chondroitin sulfate proteoglycans (CSPGs) in the glial scar around the site of chronic SCI negatively influence the long-term survival and integration of transplanted NPCs and their therapeutic potential for promoting functional repair and plasticity. We targeted CSPGs in the chronically injured spinal cord by sustained infusion of chondroitinase ABC (ChABC). One week later, the same rats were treated with transplants of NPCs and transient infusion of growth factors, EGF, bFGF, and PDGF-AA. We demonstrate that perturbing CSPGs dramatically optimizes NPC transplantation in chronic SCI. Engrafted NPCs successfully integrate and extensively migrate within the host spinal cord and principally differentiate into oligodendrocytes. Furthermore, this combined strategy promoted the axonal integrity and plasticity of the corticospinal tract and enhanced the plasticity of descending serotonergic pathways. These neuroanatomical changes were also associated with significantly improved neurobehavioral recovery after chronic SCI. Importantly, this strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. For the first time, we demonstrate key biological and functional benefits for the combined use of ChABC, growth factors, and NPCs to repair the chronically injured spinal cord. These findings could potentially bring us closer to the application of NPCs for patients suffering from chronic SCI or other conditions characterized by the formation of a glial scar.


Assuntos
Células-Tronco Adultas/transplante , Condroitinases e Condroitina Liases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Plasticidade Neuronal , Neurônios/transplante , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/cirurgia , Animais , Axônios/metabolismo , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Doença Crônica , Feminino , Camundongos , Camundongos Transgênicos , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA