Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(46): 28950-28959, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139567

RESUMO

T cells express clonotypic T cell receptors (TCRs) that recognize peptide antigens in the context of class I or II MHC molecules (pMHCI/II). These receptor modules associate with three signaling modules (CD3γε, δε, and ζζ) and work in concert with a coreceptor module (either CD8 or CD4) to drive T cell activation in response to pMHCI/II. Here, we describe a first-generation biomimetic five-module chimeric antigen receptor (5MCAR). We show that 1) chimeric receptor modules built with the ectodomains of pMHCII assemble with CD3 signaling modules into complexes that redirect cytotoxic T lymphocyte (CTL) specificity and function in response to the clonotypic TCRs of pMHCII-specific CD4+ T cells, and 2) surrogate coreceptor modules enhance the function of these complexes. Furthermore, we demonstrate that adoptively transferred 5MCAR-CTLs can mitigate type I diabetes by targeting autoimmune CD4+ T cells in NOD mice. This work provides a framework for the construction of biomimetic 5MCARs that can be used as tools to study the impact of particular antigen-specific T cells in immune responses, and may hold potential for ameliorating diseases mediated by pathogenic T cells.


Assuntos
Antígenos/metabolismo , Biomimética/métodos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Feminino , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/imunologia , Pâncreas/patologia , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia
2.
J Immunol ; 199(9): 3326-3335, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978694

RESUMO

We describe a novel B cell-associated cytokine, encoded by an uncharacterized gene (C17orf99; chromosome 17 open reading frame 99), that is expressed in bone marrow and fetal liver and whose expression is also induced in peripheral B cells upon activation. C17orf99 is only present in mammalian genomes, and it encodes a small (∼27-kDa) secreted protein unrelated to other cytokine families, suggesting a function in mammalian immune responses. Accordingly, C17orf99 expression is induced in the mammary gland upon the onset of lactation, and a C17orf99-/- mouse exhibits reduced levels of IgA in the serum, gut, feces, and lactating mammary gland. C17orf99-/- mice have smaller and fewer Peyer's patches and lower numbers of IgA-secreting cells. The microbiome of C17orf99-/- mice exhibits altered composition, likely a consequence of the reduced levels of IgA in the gut. Although naive B cells can express C17orf99 upon activation, their production increases following culture with various cytokines, including IL-4 and TGF-ß1, suggesting that differentiation can result in the expansion of C17orf99-producing B cells during some immune responses. Taken together, these observations indicate that C17orf99 encodes a novel B cell-associated cytokine, which we have called IL-40, that plays an important role in humoral immune responses and may also play a role in B cell development. Importantly, IL-40 is also expressed by human activated B cells and by several human B cell lymphomas. The latter observations suggest that it may play a role in the pathogenesis of certain human diseases.


Assuntos
Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Interleucinas/imunologia , Nódulos Linfáticos Agregados/imunologia , Animais , Humanos , Imunoglobulina A/imunologia , Interleucinas/genética , Células Jurkat , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Camundongos , Camundongos Knockout
3.
Proc Natl Acad Sci U S A ; 113(9): E1316-25, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884167

RESUMO

The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in ß-amyloid (Aß) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aß clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression.


Assuntos
Adaptação Fisiológica , Doença de Alzheimer/fisiopatologia , Microglia/patologia , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Imunoglobulina G/sangue , Camundongos , Fagocitose
4.
EMBO Mol Med ; 15(9): e17748, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37538042

RESUMO

Hematopoietic cell transplantation (HCT) treats many blood conditions but remains underused due to complications such as graft-versus-host disease (GvHD). In GvHD, donor immune cells attack the patient, requiring powerful immunosuppressive drugs like glucocorticoids (GCs) to prevent death. In this study, we tested the hypothesis that donor cell conditioning with the glucocorticoid fluticasone propionate (FLU) prior to transplantation could increase hematopoietic stem cell (HSC) engraftment and reduce GvHD. Murine HSCs treated with FLU had increased HSC engraftment and reduced severity and incidence of GvHD after transplantation into allogeneic hosts. While most T cells died upon FLU treatment, donor T cells repopulated in the hosts and appeared less inflammatory and alloreactive. Regulatory T cells (Tregs) are immunomodulatory and survived FLU treatment, resulting in an increased ratio of Tregs to conventional T cells. Our results implicate an important role for Tregs in maintaining allogeneic tolerance in FLU-treated grafts and suggest a therapeutic strategy of pre-treating donor cells (and not the patients directly) with GCs to simultaneously enhance engraftment and reduce GvHD upon allogeneic HCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Fluticasona/farmacologia , Fluticasona/uso terapêutico , Transplante Homólogo/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/prevenção & controle , Imunossupressores
5.
Front Cell Dev Biol ; 9: 734176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513848

RESUMO

Hematopoietic stem cells (HSCs) are defined by their self-renewal, multipotency, and bone marrow (BM) engraftment abilities. How HSCs emerge during embryonic development remains unclear, but are thought to arise from hemogenic endothelium through an intermediate precursor called "pre-HSCs." Pre-HSCs have self-renewal and multipotent activity, but lack BM engraftability. They can be identified functionally by transplantation into neonatal recipients, or by in vitro co-culture with cytokines and stroma followed by transplantation into adult recipients. While pre-HSCs express markers such as Kit and CD144, a precise surface marker identity for pre-HSCs has remained elusive due to the fluctuating expression of common HSC markers during embryonic development. We have previously determined that the lack of CD11a expression distinguishes HSCs in adults as well as multipotent progenitors in the embryo. Here, we use a neonatal transplantation assay to identify pre-HSC populations in the mouse embryo. We establish CD11a as a critical marker for the identification and enrichment of pre-HSCs in day 10.5 and 11.5 mouse embryos. Our proposed pre-HSC population, termed "11a- eKLS" (CD11a- Ter119- CD43+ Kit+ Sca1+ CD144+), contains all in vivo long-term engrafting embryonic progenitors. This population also displays a cell-cycle status expected of embryonic HSC precursors. Furthermore, we identify the neonatal liver as the likely source of signals that can mature pre-HSCs into BM-engraftable HSCs.

6.
Stem Cells Transl Med ; 7(6): 468-476, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29543389

RESUMO

Hematopoietic stem cells (HSCs) are the self-renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two-color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. Stem Cells Translational Medicine 2018;7:468-476.


Assuntos
Biomarcadores/metabolismo , Antígeno CD11a/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Citometria de Fluxo/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/toxicidade
7.
mBio ; 4(4)2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23839215

RESUMO

UNLABELLED: Interleukin-1ß (IL-1ß) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1ß; however, the host and parasite factors that mediate IL-1ß production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1ß transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1ß release, suggesting a role for the inflammasome in T. gondii-induced IL-1ß production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1ß induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1ß. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1ß mRNA and protein release than did the type I and III strains. Since IL-1ß transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1ß induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1ß production. IMPORTANCE: Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1ß (IL-1ß), a "master regulator" of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1ß during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1ß in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1ß production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1ß regulation, thereby enhancing our potential to modulate inflammation in the body.


Assuntos
Antígenos de Protozoários/imunologia , Caspase 1/imunologia , Proteínas do Citoesqueleto/imunologia , Imunidade Inata , Interleucina-1beta/imunologia , Monócitos/imunologia , Toxoplasma/imunologia , Antígenos de Protozoários/genética , Proteínas Adaptadoras de Sinalização CARD , Células Cultivadas , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Monócitos/parasitologia , Toxoplasma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA