Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(8): 6326-6332, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779301

RESUMO

Capillary forces play an important role during the dewatering and drying of nanocellulosic materials. Traditional moisture removal techniques, such as heating, have been proved to be deterimental to the properties of these materials and hence, there is a need to develop novel dewatering techniques without affecting the desired properties of materials. It is, therefore, important to explore novel methods for dewatering these high-added-value materials without negatively influencing their properties. In this context, we explore the effect of electric field on the capillary forces developed by a liquid-water bridge between two cellulosic surfaces, which may be formed during the water removal process following its displacement from the interfibrillar spaces. All-atom molecular dynamics (MD) simulations have been used to study the influence of an externally applied electric field on the capillary force exerted by a water bridge. Our results suggest that the equilibrium contact angle of water and the capillary force exerted by the water bridge between two nanocellulosic surfaces depend on the magnitude and direction of the externally applied electric fields. Hence, an external electric field can be applied to manipulate the capillary forces between two particles. The close agreement between the capillary forces measured through MD simulations and those calculated through classical equations indicates that, within the range of the electric field applied in this study, Young-Laplace equations can be safely employed to predict the capillary forces between two particles. The present study provides insights into the use of electric fields for drying of nanocellulosic materials.

2.
Phys Chem Chem Phys ; 20(27): 18262-18270, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953159

RESUMO

Development of functional nanofluidic devices requires understanding the fundamentals of capillary driven flow in nanochannels. In this context, we conduct molecular dynamics simulations of water capillary imbibition in silica nanoslits under externally applied electric (E) fields with strengths between 0 and 1 V nm-1. For increasing E-fields, we observe a systematic lowering in the meniscus contact angle and a decrease in the corresponding water filling rates. These results contrast markedly the classical Washburn-Bosanquet's equation which predicts an increase in filling rates for lower water contact angles. Our study provides evidence that the observed decrease in water filling rates can be attributed to the interplay between two underlying mechanisms, a reduced fluidity of interfacial water and a systematic alignment of the water molecules in the bulk as a response to the particular strength of the applied E-field. Therefore, during water capillary filling a constant E-field applied in the direction parallel to the water imbibition leads to a lower than expected filling rate caused by a viscosity increase in the bulk and an altered solid-liquid friction on the channel walls. These coupled mechanisms governing capillarity under the action of applied E-fields could be manipulated for controlling imbibition of polar liquid solutions in nanofluidic devices.

3.
Phys Chem Chem Phys ; 18(47): 31997-32001, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27858022

RESUMO

Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise.

4.
Membranes (Basel) ; 13(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37888006

RESUMO

Recent studies on membrane fouling have made considerable progress in reducing its adverse effects. However, a lack of comprehensive studies focusing on the underlying fouling mechanisms remains. This work aims to address a part of this gap by investigating the influence of feed suspension chemistry and operating conditions on the fouling characteristics of microcrystalline cellulose. Fluid dynamic gauging (FDG) was employed to monitor the properties of fouling layers under varied conditions. FDG results revealed that the cohesive strength of fouling layers increased in the direction towards the membrane, which can be associated with the higher compressive pressures exerted on foulants deposited near the surface. At lower pHs and higher ionic strengths, reduced electrostatic repulsions between particles likely resulted in particle agglomeration, leading to the formation of thicker cakes. In addition, thicker cake layers were also observed at higher feed concentrations, higher operating transmembrane pressures, and longer filtration times. The cross-flow velocity influenced the resilience of fouling layers significantly, resulting in thinner yet stronger cake layers in the transition and turbulent flow regimes. These findings regarding the influence of feed characteristics and operating conditions on the fouling behavior can be beneficial in developing effective antifouling strategies in membrane separation processes.

5.
J Colloid Interface Sci ; 589: 347-355, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33476890

RESUMO

HYPOTHESIS: Interfacial tensions play an important role in dewatering of hydrophilic materials like nanofibrillated cellulose, and are affected by the molecular organization of water at the interface. Application of an electric field influences the orientation of water molecules along the field direction. Hence, it should be possible to alter the interfacial free energies to tune the wettability of cellulose surface through application of an external electric field thus, aiding the dewatering process. SIMULATIONS: Molecular dynamics simulations of cellulose surface in contact with water under the influence of an external electric field have been conducted with GLYCAM-06 forcefield. The effect of variation in electric field intensity and directions on the spreading coefficient has been addressed via orientational preference of water molecules and interfacial free energy analyses. FINDINGS: The application of electric field influences the interfacial free energy difference at the cellulose-water interface. The spreading coefficient increases with the electric field directed parallel to the cellulose-water interface while it decreases in the perpendicular electric field. Variation in interfacial free energies seems to explain the change in contact angle adequately in presence of an electric field. The wettability of cellulose surface can be tuned by the application of an external electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA