Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2318771121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416686

RESUMO

Apical cilia on epithelial cells defend the lung by propelling pathogens and particulates out of the respiratory airways. Ciliated cells produce ATP that powers cilia beating by densely grouping mitochondria just beneath the apical membrane. However, this efficient localization comes at a cost because electrons leaked during oxidative phosphorylation react with molecular oxygen to form superoxide, and thus, the cluster of mitochondria creates a hotspot for oxidant production. The relatively high oxygen concentration overlying airway epithelia further intensifies the risk of generating superoxide. Thus, airway ciliated cells face a unique challenge of producing harmful levels of oxidants. However, surprisingly, highly ciliated epithelia produce less reactive oxygen species (ROS) than epithelia with few ciliated cells. Compared to other airway cell types, ciliated cells express high levels of mitochondrial uncoupling proteins, UCP2 and UCP5. These proteins decrease mitochondrial protonmotive force and thereby reduce production of ROS. As a result, lipid peroxidation, a marker of oxidant injury, decreases. However, mitochondrial uncoupling proteins exact a price for decreasing oxidant production; they decrease the fraction of mitochondrial respiration that generates ATP. These findings indicate that ciliated cells sacrifice mitochondrial efficiency in exchange for safety from damaging oxidation. Employing uncoupling proteins to prevent oxidant production, instead of relying solely on antioxidants to decrease postproduction oxidant levels, may offer an advantage for targeting a local area of intense ROS generation.


Assuntos
Canais Iônicos , Superóxidos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Superóxidos/metabolismo , Canais Iônicos/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Células Epiteliais/metabolismo , Oxidantes/farmacologia , Oxigênio/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Cell ; 143(6): 911-23, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145458

RESUMO

Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR⁻(/)⁻ epithelia showed markedly reduced Cl⁻ and HCO3⁻ transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR⁻(/)⁻ pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl⁻ conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl⁻ and HCO3⁻ in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.


Assuntos
Ânions/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Transporte de Íons , Sistema Respiratório/patologia , Animais , Animais Recém-Nascidos , Epitélio/metabolismo , Humanos , Sistema Respiratório/metabolismo , Sus scrofa
3.
Nature ; 567(7748): 405-408, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867598

RESUMO

Loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) compromise epithelial HCO3- and Cl- secretion, reduce airway surface liquid pH, and impair respiratory host defences in people with cystic fibrosis1-3. Here we report that apical addition of amphotericin B, a small molecule that forms unselective ion channels, restored HCO3- secretion and increased airway surface liquid pH in cultured airway epithelia from people with cystic fibrosis. These effects required the basolateral Na+, K+-ATPase, indicating that apical amphotericin B channels functionally interfaced with this driver of anion secretion. Amphotericin B also restored airway surface liquid pH, viscosity, and antibacterial activity in primary cultures of airway epithelia from people with cystic fibrosis caused by different mutations, including ones that do not yield CFTR, and increased airway surface liquid pH in CFTR-null pigs in vivo. Thus, unselective small-molecule ion channels can restore host defences in cystic fibrosis airway epithelia via a mechanism that is independent of CFTR and is therefore independent of genotype.


Assuntos
Fibrose Cística/metabolismo , Epitélio/metabolismo , Canais Iônicos/metabolismo , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Anfotericina B/farmacologia , Animais , Bicarbonatos/metabolismo , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
4.
Am J Respir Cell Mol Biol ; 67(4): 491-502, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849656

RESUMO

In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.


Assuntos
Fibrose Cística , Alanina , Bumetanida , Humanos , Concentração de Íons de Hidrogênio , Prolina , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
5.
Proc Natl Acad Sci U S A ; 115(6): 1370-1375, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358407

RESUMO

Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gαi and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses.


Assuntos
Brônquios/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Traqueia/citologia , Células Cultivadas , Cílios/metabolismo , Cílios/fisiologia , AMP Cíclico/metabolismo , Células Epiteliais/citologia , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
6.
Am J Physiol Cell Physiol ; 319(2): C331-C344, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432926

RESUMO

The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base ([Formula: see text]) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing [Formula: see text] secretion. TNFα+IL-17 increased expression and function of two apical [Formula: see text] transporters, CFTR anion channels and pendrin Cl-/[Formula: see text] exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was coexpressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate [Formula: see text] secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Interleucina-17/genética , Mucosa Respiratória/metabolismo , Transportadores de Sulfato/genética , Fator de Necrose Tumoral alfa/genética , Álcalis/metabolismo , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(19): 5382-7, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114540

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.


Assuntos
Bicarbonatos/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Fibrose Cística/imunologia , Imunidade Inata/imunologia , Mucosa Respiratória/imunologia , Animais , Animais Recém-Nascidos , Fibrose Cística/terapia , Terapia Genética , Transplante de Células-Tronco , Suínos
8.
Lab Invest ; 98(6): 825-838, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467455

RESUMO

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with CF, structural airway defects are increasingly recognized before the onset of significant lung disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal lung disease similar to humans; therefore, we studied lung development in the pig model (non-CF and CF). CF trachea and proximal airways had structural lesions detectable as early as pseudoglandular development. At this early developmental stage, budding CF airways had smaller, hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We studied primary pig airway epithelial cell cultures and found that FGF10 increased cellular proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR is consistent with the site, during branching morphogenesis, where airway epithelia are responsive to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/liquid secretion likely contributes to these hypo-distended airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Pulmão/embriologia , Animais , Células Cultivadas , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Feminino , Fator 10 de Crescimento de Fibroblastos/fisiologia , Humanos , Morfogênese , Suínos , Traqueia/anormalidades
9.
Am J Physiol Lung Cell Mol Physiol ; 310(7): L670-9, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801568

RESUMO

While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl(-) and bicarbonate (HCO3 (-)) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl(-) and HCO3 (-) transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization.


Assuntos
Células Epiteliais Alveolares/metabolismo , Bicarbonatos/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais Alveolares/imunologia , Animais , Transporte Biológico , Células Cultivadas , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Concentração de Íons de Hidrogênio , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Sus scrofa
10.
Proc Natl Acad Sci U S A ; 109(33): 13362-7, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22853952

RESUMO

Production of functional proteins requires multiple steps, including gene transcription and posttranslational processing. MicroRNAs (miRNAs) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that miRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with an miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl(-) permeability independent of elevated mRNA levels. An miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, ΔF508, causes protein misfolding, protein degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-ΔF508 and restored Cl(-) transport to cystic fibrosis airway epithelia. This miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process more broadly than recognized previously. This discovery also provides therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Transporte Biológico , Cloretos/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Perfilação da Expressão Gênica , Células HeLa , Humanos , Pulmão/metabolismo , Pulmão/patologia , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3
11.
Am J Respir Cell Mol Biol ; 51(3): 354-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24669817

RESUMO

The most common cystic fibrosis (CF) mutation, ΔF508, causes protein misfolding, leading to proteosomal degradation. We recently showed that expression of miR-138 enhances CF transmembrane conductance regulator (CFTR) biogenesis and partially rescues ΔF508-CFTR function in CF airway epithelia. We hypothesized that a genomic signature approach can be used to identify new bioactive small molecules affecting ΔF508-CFTR rescue. The Connectivity Map was used to identify 27 small molecules with potential to restore ΔF508-CFTR function in airway epithelia. The molecules were screened in vitro for efficacy in improving ΔF508-CFTR trafficking, maturation, and chloride current. We identified four small molecules that partially restore ΔF508-CFTR function in primary CF airway epithelia. Of these, pyridostigmine showed cooperativity with corrector compound 18 in improving ΔF508-CFTR function. There are few CF therapies based on new molecular insights. Querying the Connectivity Map with relevant genomic signatures offers a method to identify new candidates for rescuing ΔF508-CFTR function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação da Expressão Gênica , Genômica , Biperideno/química , Brônquios/metabolismo , Cloretos/química , Biologia Computacional , Fibrose Cística/genética , Genoma Humano , Células HeLa , Humanos , Fenótipo , Pizotilina/química , Transporte Proteico , Brometo de Piridostigmina/química , Mucosa Respiratória/metabolismo , Software , Ácido Valproico/química
12.
Am J Respir Cell Mol Biol ; 50(3): 637-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24134460

RESUMO

The mammalian airways are sensitive to inhaled stimuli, and airway diseases are characterized by hypersensitivity to volatile stimuli, such as perfumes, industrial solvents, and others. However, the identity and function of the cells in the airway that can sense volatile chemicals remain uncertain, particularly in humans. Here, we show that solitary pulmonary neuroendocrine cells (PNECs), which are morphologically distinct and physiologically undefined, might serve as chemosensory cells in human airways. This conclusion is based on our finding that some human PNECs expressed members of the olfactory receptor (OR) family in vivo and in primary cell culture, and are anatomically positioned in the airway epithelium to respond to inhaled volatile chemicals. Furthermore, apical exposure of primary-culture human airway epithelial cells to volatile chemicals decreased levels of serotonin in PNECs, and the led to the release of the neuropeptide calcitonin gene-related peptide (CGRP) to the basal medium. These data suggest that volatile stimulation of PNECs can lead to the secretion of factors that are capable of stimulating the corresponding receptors in the lung epithelium. We also found that the distribution of serotonin and neuropeptide receptors may change in chronic obstructive pulmonary disease, suggesting that increased PNEC-dependent chemoresponsiveness might contribute to the altered sensitivity to volatile stimuli in this disease. Together, these data indicate that human airway epithelia harbor specialized cells that respond to volatile chemical stimuli, and may help to explain clinical observations of odorant-induced airway reactions.


Assuntos
Células Quimiorreceptoras/metabolismo , Células Epiteliais/metabolismo , Pulmão/inervação , Odorantes , Transdução de Sinais , Animais , Biomarcadores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Furões , Humanos , Macaca mulatta , Camundongos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ratos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Serotonina/metabolismo , Volatilização
13.
Mol Ther ; 21(5): 947-53, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23511247

RESUMO

Cystic fibrosis (CF) pigs spontaneously develop sinus and lung disease resembling human CF. The CF pig presents a unique opportunity to use gene transfer to test hypotheses to further understand the pathogenesis of CF sinus disease. In this study, we investigated the ion transport defect in the CF sinus and found that CF porcine sinus epithelia lack cyclic AMP (cAMP)-stimulated anion transport. We asked whether we could restore CF transmembrane conductance regulator gene (CFTR) current in the porcine CF sinus epithelia by gene transfer. We quantified CFTR transduction using an adenovirus expressing CFTR and green fluorescent protein (GFP). We found that as little as 7% of transduced cells restored 6% of CFTR current with 17-28% of transduced cells increasing CFTR current to 50% of non-CF levels. We also found that we could overcorrect cAMP-mediated current in non-CF epithelia. Our findings indicate that CF porcine sinus epithelia lack anion transport, and a relatively small number of cells expressing CFTR are required to rescue the ion transport phenotype. These studies support the use of the CF pig as a preclinical model for future gene therapy trials in CF sinusitis.


Assuntos
Adenoviridae/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Vetores Genéticos/genética , Mucosa Nasal/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico , AMP Cíclico/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Proteínas de Fluorescência Verde/genética , Humanos , Mucosa Nasal/ultraestrutura , Sódio/metabolismo , Suínos , Técnicas de Cultura de Tecidos , Transdução Genética , Transgenes
14.
Proc Natl Acad Sci U S A ; 108(25): 10260-5, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646513

RESUMO

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR(-/-) and CFTR(ΔF508/ΔF508) airway epithelia lacked anion conductance, and they did not hyperabsorb Na(+). Therefore, we asked whether Cl(-) and Na(+) conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na(+) channel inhibitor amiloride produced similar reductions in Gt and Na(+) absorption, indicating that Na(+) conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl(-) conductance. These results indicate that Na(+) conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF.


Assuntos
Cloretos/metabolismo , Fibrose Cística/fisiopatologia , Epitélio/metabolismo , Mucosa Respiratória/metabolismo , Sódio/metabolismo , Amilorida/metabolismo , Animais , Ânions/metabolismo , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons/fisiologia , Mucosa Respiratória/anatomia & histologia , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/metabolismo , Suínos
15.
Proc Natl Acad Sci U S A ; 108(7): 2921-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21285372

RESUMO

Gene transfer could provide a novel therapeutic approach for cystic fibrosis (CF), and adeno-associated virus (AAV) is a promising vector. However, the packaging capacity of AAV limits inclusion of the full-length cystic fibrosis transmembrane conductance regulator (CFTR) cDNA together with other regulatory and structural elements. To overcome AAV size constraints, we recently developed a shortened CFTR missing the N-terminal portion of the R domain (residues 708-759, CFTRΔR) and found that it retained regulated anion channel activity in vitro. To test the hypothesis that CFTRΔR could correct in vivo defects, we generated CFTR(-/-) mice bearing a transgene with a fatty acid binding protein promoter driving expression of human CFTRΔR in the intestine (CFTR(-/-);TgΔR). We found that intestinal crypts of CFTR(-/-);TgΔR mice expressed CFTRΔR and the intestine appeared histologically similar to that of WT mice. Moreover, like full-length CFTR transgene, the CFTRΔR transgene produced CFTR Cl(-) currents and rescued the CFTR(-/-) intestinal phenotype. These results indicate that the N-terminal part of the CFTR R domain is dispensable for in vivo intestinal physiology. Thus, CFTRΔR may have utility for AAV-mediated gene transfer in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/terapia , Terapia Genética/métodos , Estrutura Terciária de Proteína/genética , Animais , Dependovirus , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Intestinos/anatomia & histologia , Camundongos , Camundongos Knockout
16.
Nat Biomed Eng ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987629

RESUMO

Prime editing (PE) enables precise and versatile genome editing without requiring double-stranded DNA breaks. Here we describe the systematic optimization of PE systems to efficiently correct human cystic fibrosis (CF) transmembrane conductance regulator (CFTR) F508del, a three-nucleotide deletion that is the predominant cause of CF. By combining six efficiency optimizations for PE-engineered PE guide RNAs, the PEmax architecture, the transient expression of a dominant-negative mismatch repair protein, strategic silent edits, PE6 variants and proximal 'dead' single-guide RNAs-we increased correction efficiencies for CFTR F508del from less than 0.5% in HEK293T cells to 58% in immortalized bronchial epithelial cells (a 140-fold improvement) and to 25% in patient-derived airway epithelial cells. The optimizations also resulted in minimal off-target editing, in edit-to-indel ratios 3.5-fold greater than those achieved by nuclease-mediated homology-directed repair, and in the functional restoration of CFTR ion channels to over 50% of wild-type levels (similar to those achieved via combination treatment with elexacaftor, tezacaftor and ivacaftor) in primary airway cells. Our findings support the feasibility of a durable one-time treatment for CF.

17.
Am J Respir Cell Mol Biol ; 49(4): 544-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23646886

RESUMO

MicroRNAs (miRNAs) are increasingly recognized as important posttranscriptional regulators of gene expression, and changes in their actions can contribute to disease states. Little is understood regarding miRNA functions in the airway epithelium under normal or diseased conditions. We profiled miRNA expression in well-differentiated primary cultures of human cystic fibrosis (CF) and non-CF airway epithelia, and discovered that miR-509-3p and miR-494 concentrations were increased in CF epithelia. Human non-CF airway epithelia, transfected with the mimics of miR-509-3p or miR-494, showed decreased cystic fibrosis transmembrane conductance regulator (CFTR) expression, whereas their respective anti-miRs exerted the opposite effect. Interestingly, the two miRNAs acted cooperatively in regulating CFTR expression. Upon infecting non-CF airway epithelial cells with Staphylococcus aureus, or upon stimulating them with the proinflammatory cytokines TNF-α or IL-1ß, we observed an increased expression of both miRNAs and a concurrent decrease in CFTR expression and function, suggesting that inflammatory mediators may regulate these miRNAs. Transfecting epithelia with anti-miRs for miR-509-3p and miR-494, or inhibiting NF-κB signaling before stimulating cells with TNFα or IL-1ß, suppressed these responses, suggesting that the expression of both miRNAs was responsive to NF-κB signaling. Thus, miR-509-3p and miR-494 are dynamic regulators of CFTR abundance and function in normal, non-CF airway epithelia.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Linhagem Celular , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Mucosa Respiratória/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37581935

RESUMO

The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl- into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl- channels in their basolateral membrane. Disrupting barttin/Cl- channel function impaired liquid absorption, and overexpressing barttin/Cl- channels increased absorption. Together, apical CFTR and basolateral barttin/Cl- channels provide an electrically conductive pathway for Cl- flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.


Assuntos
Canais de Cloreto , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Pulmão/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 303(2): L152-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22637155

RESUMO

A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epithelial cells (T2AECs) cultured at the air-liquid interface. CFTR was distributed exclusively to the apical surface of cultured T2AECs. Alveolar epithelia from CFTR(-/-) pigs failed to increase liquid absorption in response to agents that increase cAMP, whereas cAMP-stimulated liquid absorption in CFTR(+/-) epithelia was similar to that in CFTR(+/+) epithelia. Expression of recombinant CFTR restored stimulated liquid absorption in CFTR(-/-) T2AECs but had no effect on CFTR(+/+) epithelia. In ex vivo studies of nonperfused lungs, stimulated liquid absorption was defective in CFTR(-/-) alveolar epithelia but similar between CFTR(+/+) and CFTR(+/-) epithelia. When epithelia were studied at the air-liquid interface, elevating cAMP levels increased subphase liquid height in CFTR(+/+) but not in CFTR(-/-) T2AECs. Our findings demonstrate that CFTR is required for maximal liquid absorption under cAMP stimulation, but it is not the rate-limiting factor. Furthermore, our data define a role for CFTR in liquid secretion by T2AECs. These insights may help to develop new treatment strategies for pulmonary edema and respiratory distress syndrome, diseases in which lung liquid transport is disrupted.


Assuntos
Células Epiteliais Alveolares/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Água Extravascular Pulmonar/metabolismo , Absorção , Células Epiteliais Alveolares/fisiologia , Animais , Transporte Biológico , Polaridade Celular , Células Cultivadas , Cloretos/metabolismo , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Impedância Elétrica , Feminino , Técnicas de Inativação de Genes , Técnicas In Vitro , Masculino , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Tensão Superficial , Sus scrofa , Junções Íntimas/metabolismo
20.
J Cyst Fibros ; 20(3): 540-550, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309058

RESUMO

BACKGROUND: Approximately 10% of people with cystic fibrosis (CF) have mutations that result in little to no CFTR production and thus cannot benefit from CFTR modulators. We previously found that Amphotericin B (AmB), a small molecule that forms anion channels, restored HCO3- secretion and increased host defenses in primary cultures of CF airway epithelia. Further, AmB increased ASL pH in CFTR-null pigs, suggesting an alternative CFTR-independent approach to achieve gain-of-function. However, it remains unclear whether this approach can be effective in people. METHODS: To determine whether AmB can impact physiology in people with CF, we first tested whether Fungizone, a clinically approved AmB formulation, could cause electrophysiological effects consistent with anion secretion in primary cultures of CF airway epithelia. We then evaluated the capacity of AmB to change nasal potential difference (NPD), a key clinical biomarker, in people with CF not on CFTR modulators. RESULTS: AmB increased transepithelial Cl- current and hyperpolarized calculated transepithelial voltage in primary cultures of CF airway epithelia from people with two nonsense mutations. In eight people with CF not on CFTR modulators, intranasal Fungizone treatment caused a statistically significant change in NPD. This change was similar in direction and magnitude to the effect of ivacaftor in people with a G551D mutation. CONCLUSIONS: Our results provide the first evidence that AmB can impact a clinical biomarker in people with CF. These results encourage additional clinical studies in people with CF to determine whether small molecule anion channels can provide benefit.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Canais de Ânion Dependentes de Voltagem/efeitos dos fármacos , Administração Intranasal , Anfotericina B/administração & dosagem , Antifúngicos/administração & dosagem , Células Cultivadas , Códon sem Sentido , Fibrose Cística/genética , Humanos , Mucosa Respiratória/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA